Open Access Open Access  Restricted Access Subscription or Fee Access

Disturbance Rejection for Quadrotor Attitude Control Based on PD and Fuzzy Logic Algorithm


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v9i6.9930

Abstract


Quadrotor is frequently used for photography enthusiasts to take aerial photographs. When taking aerial photographs, quadrotor moves toward destination point to obtain a good picture. When hovering in open space, quadrotor is often disturbed by wind. The paper presents control strategy for a nonlinear system to solve the problem. The main purpose of the research is to design a controller for maintaining a fixed position with a presence of horizontal wind disturbance. The control structure uses fuzzy logic controller algorithm to stabilize the xy position of the quadrotor by using Mamdani inference engine to obtain a stable quadrotor with fast rise time and settling time as well as, minimum overshoot and steady state error. The results show that the proposed control strategy is able to stabilize the quadrotor when hovering with the presence of disturbance.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Quadrotor; Fuzzy; PD; Overshoot; Disturbance Rejection

Full Text:

PDF


References


U. Niethammer, M. R. James, S. Rothmund, J. Travelletti, and M. Joswig, UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results, Eng. Geol., vol. 128, n. 9, March 2012, pp. 2–11.
http://dx.doi.org/10.1016/j.enggeo.2011.03.012

N. M. Raharja, Iswanto, M. Faris, and A. I. Cahyadi, Hover position quadrotor control with fuzzy logic, International Conference on Infonnation Technology, Computer and Electrical Engineering (lCITACEE), 2014, no. 4, pp. 89–92.
http://dx.doi.org/10.1109/icitacee.2014.7065720

J. J. Xiong and E. H. Zheng, Position and attitude tracking control for a quadrotor UAV, ISA Trans., vol. 53 n. 3, pp. 725–731.
http://dx.doi.org/10.1016/j.isatra.2014.01.004

K. Alexis, G. Nikolakopoulos, and a. Tzes, Model predictive control scheme for the autonomous flight of an unmanned quadrotor, Proc. - ISIE 2011 2011 IEEE Int. Symp. Ind. Electron, 2011, pp. 2243–2248.
http://dx.doi.org/10.1109/isie.2011.5984510

B. Erginer and E. Altug, Modeling and PD Control of a Quadrotor VTOL Vehicle, 2007 IEEE Intelligent Vehicles Symposium, 2007, pp. 894–899.
http://dx.doi.org/10.1109/ivs.2007.4290230

A. S. Brandão, D. Gandolfo, M. Sarcinelli-Filho, and R. Carelli, PVTOL maneuvers guided by a high-level nonlinear controller applied to a rotorcraft machine, Eur. J. Control, vol. 20 n. 4, 2014, pp. 172–179.
http://dx.doi.org/10.1016/j.ejcon.2014.04.003

D. Zhang, H. Qi, X. Wu, Y. Xie, and J. Xu, The quadrotor dynamic modeling and indoor target tracking control method, Math. Probl. Eng., 2014 vol. 2014, pp. 1–9.
http://dx.doi.org/10.1155/2014/637034

H. Liu, Y. Bai, G. Lu, Z. Shi, and Y. Zhong, Robust Tracking Control of a Quadrotor Helicopter, J. Intell. Robot. Syst., 2013, vol. 75 n. 3, pp. 8322–8327.
http://dx.doi.org/10.1007/s10846-013-9838-2

K. U. Lee, Y. H. Choi, and J. B. Park, Position Control of a Quadrotor: Dynamic Surface Control Approach, in SICE Annual Conference, 2013, pp. 1–6.
http://dx.doi.org/10.1109/sice.2006.315265

H. S. Khan and M. B. Kadri, Position Control of Quadrotor by Embedded PID Control with Hardware in Loop Simulation, Multi-Topic Conference (INMIC), 2014 IEEE 17th International, 2014, pp. 395–400.
http://dx.doi.org/10.1109/inmic.2014.7097372

O. Santos, H. Romero, S. Salazar, and R. Lozano, Real-time stabilization of a quadrotor UAV: Nonlinear optimal and suboptimal control, J. Intell. Robot. Syst. Theory Appl., 2013, vol. 70, no. 1–4, pp. 79–91.
http://dx.doi.org/10.1007/s10846-012-9711-8

M. Santos, V. López, and F. Morata, Intelligent fuzzy controller of a quadrotor, Proceedings of 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2010, 2010, pp. 141–146.
http://dx.doi.org/10.1109/iske.2010.5680812

M. Varga and S. Bogdan, Fuzzy-Lyapunov Based Quadrotor Controller Design, in Proceedings of the European Control Conference 2009 Budapest, 2009, pp. 928–933.
http://dx.doi.org/10.5220/0002216601050112

F. Jurado, G. Palacios, F. Flores, and H. M. Becerra, Vision-Based Trajectory Tracking System for an Emulated Quadrotor UAV, Asian J. Control, 2014, vol. 16 n. 3, pp. 729–741.
http://dx.doi.org/10.1002/asjc.886

R. Mahony, V. Kumar, and P. Corke, Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor, Robot. Autom. Mag. IEEE, 2012, vol. 19 n. 3, pp. 20–32.
http://dx.doi.org/10.1109/mra.2012.2206474

M. Q. Abdurrohman, R. Inovan, A. Ataka, H. Tnunay, A. Wimbo, I. -, A. Cahyadi, and Y. Yamamoto, “A Modified Gain Schedulling Controller by Considering the Sparseness Property of UAV Quadrotors,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 6, no. 1, p. 9, 2015.
http://dx.doi.org/10.14203/j.mev.2015.v6.9-18

I. Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “3D Object Modeling Using Data Fusion from Laser Sensor on Quadrotor,” in Advances of Science and Technology for Society: Proceedings of the 1st International Conference on Science and Technology 2015 (ICST-2015), 2016, pp. 170001–1 – 170001–7.
http://dx.doi.org/10.1063/1.4958603

Larbi, M., Meguenni, K., Meddahi, Y., Litim, M., Nonlinear Observer and Backstepping Control of Quadrotor Unmanned Aerial Vehicle, (2013) International Review of Aerospace Engineering (IREASE), 6 (5), pp. 233-242.

Deif, T., Kassem, A., El Baioumi, G., Modeling and Attitude Stabilization of Indoor Quad Rotor, (2014) International Review of Aerospace Engineering (IREASE), 7 (2), pp. 43-47.
http://dx.doi.org/10.15866/irease.v7i2.783

Deif, T., Kassem, A., El Baioumi, G., Modeling, Robustness, and Attitude Stabilization of Indoor Quad Rotor Using Fuzzy Logic Control, (2014) International Review of Aerospace Engineering (IREASE), 7 (6), pp. 192-201.
http://dx.doi.org/10.15866/irease.v7i6.4306

Wilburn, J., Perhinschi, M., Wilburn, B., Enhanced Modified Voronoi Algorithm for UAV Path Planning and Obstacle Avoidance, (2013) International Review of Aerospace Engineering (IREASE), 6 (1), pp. 54-63.
http://dx.doi.org/10.2514/6.2012-4904

Vinayagamoorthy, R., Aslam, M., Krishna, K., Xavior, M., Taguchi-Fuzzy Inference System for Prediction in Precision Turning of Ti-6Al-4V, (2013) International Review of Mechanical Engineering (IREME), 7 (7), pp. 1515-1522.

T. P. Tunggal, A. Latif, and Iswanto, “Low-cost portable heart rate monitoring based on photoplethysmography and decision tree,” in Advances of Science and Technology for Society: Proceedings of the 1st International Conference on Science and Technology 2015 (ICST-2015), 2016, p. 090004.
http://dx.doi.org/10.1063/1.4958522

A. N. N. Chamim, D. Ahmadi, and Iswanto, “Atmega16 Implementation As Indicators Of Maximum Speed,” Int. J. Appl. Eng. Res., vol. 11, no. 15, pp. 8432–8435, 2016.
http://dx.doi.org/10.18201/ijisae.97824

I. Iswanto, O. Wahyunggoro, and A. Imam Cahyadi, “Path Planning Based on Fuzzy Decision Trees and Potential Field,” Int. J. Electr. Comput. Eng., vol. 6, no. 1, p. 212, 2016.
http://dx.doi.org/10.11591/ijece.v6i1.8606

I. Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Quadrotor Path Planning Based On Modified Fuzzy Cell Decomposition Algorithm,” TELKOMNIKA, vol. 14, no. 2, pp. 655–664, 2016.
http://dx.doi.org/10.12928/telkomnika.v14i2.2989

N. M. Raharja, Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Altitude control for quadrotor with mamdani fuzzy model,” in 2015 International Conference on Science in Information Technology (ICSITech), 2015, pp. 309–314.
http://dx.doi.org/10.1109/icsitech.2015.7407823

Ivan Petruševski and A. Rakic, Simple Fuzzy Solution for Quadrotor Attitude Control, 12th Symposium on Neural Network Aplication in Electrical Engineering School of Electrical Engineering, 2014, no. November, pp. 93 – 98.
http://dx.doi.org/10.1109/neurel.2014.7011469

Benmiloud, T., Improved Adaptive Flux Observer of an Induction Motor with Fast Lyapunov Optimization Method, (2014) International Review of Electrical Engineering (IREE), 9 (2), pp. 300-306.

Mohanty, K., Singh, M., RTDS Implementation of Lyapunov Controller in Feedback Linearized Induction Motor Drive, (2013) International Review of Electrical Engineering (IREE), 8 (4), pp. 1199-1210.

Sharma, V., Purwar, S., Chebyshev Neural Network-Based Discrete-Time Adaptive Speed Control for a Light Weighted All-Electric Vehicle, (2014) International Review of Electrical Engineering (IREE), 9 (1), pp. 92-102.

Ouchatti, A., Abbou, A., Akherraz, M., Taouni, A., Induction Motor Controller Using Fuzzy MRAS and Backstepping Approach, (2014) International Review of Electrical Engineering (IREE), 9 (3), pp. 511-518.

Shi, F., Wang, J., Robust Coordinated Control of Excitation and SVCs in Multi-Machine Power System, (2013) International Review of Electrical Engineering (IREE), 8 (1), pp. 340-345.

Ramesh, T., Panda, A., High Performance Direct Torque and Flux Control of Induction Motor Drive Using Fuzzy Logic Based Speed Controller, (2013) International Review of Electrical Engineering (IREE), 8 (2), pp. 696-710.

Aziz, M., Elsayed, A., CFD Investigations for UAV and MAV Low Speed Airfoils Characteristics, (2015) International Review of Aerospace Engineering (IREASE), 8 (3), pp. 95-100.

Bousson, K., Gameiro, T., A Quintic Spline Approach to 4D Trajectory Generation for Unmanned Aerial Vehicles, (2015) International Review of Aerospace Engineering (IREASE), 8 (1), pp. 1-9.
http://dx.doi.org/10.15866/irease.v8i1.4780

Payam, A., Hassani, F., Fathipour, M., Design of Hybrid Closed Loop Control Systems for a MEMS Accelerometer Using Nonlinear Control Principles, (2014) International Review of Aerospace Engineering (IREASE), 7 (5), pp. 164-170.
http://dx.doi.org/10.15866/irease.v7i5.4972


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize