Open Access Open Access  Restricted Access Subscription or Fee Access

MIMO MPC Control of Distillate and Background Concentration to Binary Distillation Column in Discrete State Space

Juan Sebastian Useche(1), Angelica Orjuela(2), Dario Amaya(3*)

(1) Grupo de Aplicaciones Virtuales, Universidad Militar Nueva Granada, Colombia
(2) Grupo de Aplicaciones Virtuales, Universidad Militar Nueva Granada, Colombia
(3) Grupo de Aplicaciones Virtuales, Universidad Militar Nueva Granada, Colombia
(*) Corresponding author


DOI: https://doi.org/10.15866/ireaco.v9i6.9860

Abstract


The distillation process is one of the most important in the industry. It is a broad field with great potential for its study, improvement and control, through technologies that are being created. The new control models seek to improve the response times of systems and to reduce energy consumption, since refining and distillation plants consume considerable energy in a process. Moreover, many authors state that chemicals process are the ones which waste more energy. In recent years, this type of systems, predictive controllers, began to be applied in order to improve process efficiency and product quality. Using simulation software, it is easy to test the effectiveness of the controller and to determine if their behavior is the one desired. In this paper it is shown the functioning of a MIMO MPC controller starting from Laguerre functions, applied to a binary distillation column, and introducing the mathematical development of functions and the cost equation for order 41 system in discrete space states. It is also done the implementation for the Plant-Controller scheme in X and its subsequent simulation, analyzing the behavior of the responses to verify the robustness of this type of controller.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Distillation; Multivariable; MPC; Optimization

Full Text:

PDF


References


A. Raimondi, A. Favela-Contreras, F. Beltrán-Carbajal, A. Piñón-Rubio, and J. Luis de la Peña-Elizondo, “Design of an adaptive predictive control strategy for crude oil atmospheric distillation process,” Control Eng. Pract., vol. 34, pp. 39–48, 2015.
http://dx.doi.org/10.1016/j.conengprac.2014.09.014

A. Z., A. N., and A. Z., “Nonlinear Modelling Application in Distillation Column,” Chem. Prod. Process Model., vol. 2, 2013.

A. D. Assandri, C. de Prada, A. Rueda, and J. Luis Martínez, “Nonlinear parametric predictive temperature control of a distillation column,” Control Eng. Pract., vol. 21, no. 12, pp. 1795–1806, 2013.
http://dx.doi.org/10.1016/j.conengprac.2013.09.004

P. a. Martin, D. Odloak, and F. Kassab, “Robust model predictive control of a pilot plant distillation column,” Control Eng. Pract., vol. 21, no. 3, pp. 231–241, 2013.
http://dx.doi.org/10.1016/j.conengprac.2012.10.004

A. S. Yamashita, A. C. Zanin, and D. Odloak, “Tuning the Model Predictive Control of a Crude Distillation Unit,” ISA Trans., pp. 1–13, 2015.
http://dx.doi.org/10.1016/j.isatra.2015.10.017

Molina-Cabrera, A., Rios, M., A Kalman Latency Compensation Strategy for Model Predictive Control to Damp Inter-Area Oscillations in Delayed Power Systems, (2016) International Review of Electrical Engineering (IREE), 11 (3), pp. 296-304.
http://dx.doi.org/10.15866/iree.v11i3.8661

Pathipooranam, P., Medarametla, P., Kasilingam, K., MPC for Reduced Voltage Source Multicell Converter, (2014) International Review of Electrical Engineering (IREE), 9 (3), pp. 493-499.

Mekki, I., Bouhamida, M., Benghanem, M., Comparative Study of Predictive Multivariable Control and Decentralized Control for a Distillation Column, (2013) International Review of Automatic Control (IREACO), 6 (4), pp. 513-520.

C. A. Larsson, C. R. Rojas, X. Bombois, and H. Hjalmarsson, “Experimental evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer,” J. Process Control, vol. 31, no. 0, pp. 1–16, 2015.
http://dx.doi.org/10.1016/j.jprocont.2015.03.011

C. R. Porfírio and D. Odloak, “Optimizing model predictive control of an industrial distillation column,” Control Eng. Pract., vol. 19, pp. 1137–1146, 2011.
http://dx.doi.org/10.1016/j.conengprac.2011.06.003

X. Cai, M. James, L. Xie, and J. Bao, “Fast distributed MPC based on active set method,” Comput. Chem. Eng., vol. 71, pp. 158–170, 2014.
http://dx.doi.org/10.1016/j.compchemeng.2014.08.001

L. Seban, V. Kirubakaran, B. K. Roy, and T. K. Radhakrishnan, “GOBF-ARMA based model predictive control for an ideal reactive distillation column.,” Ecotoxicol. Environ. Saf., vol. 121, pp. 110–115, 2015.
http://dx.doi.org/10.1016/j.ecoenv.2015.04.049

J. Drgoňa, M. Klaučo, R. Valo, J. Bendžala and M. Fikar, "Model identification and predictive control of a laboratory binary distillation column," 2015 20th International Conference on Process Control (PC), Strbske Pleso, 2015, pp. 357-362.
http://dx.doi.org/10.1109/pc.2015.7169989

I. Mehta, V. Singh, and D. V Gadre, “Simulation and Control of Binary Distillation Column Using XMOS Technology,” 2011 International Conference on Signal, Image Processing and Applications, Volume: 21, pp. 228–232, 2011.
http://dx.doi.org/10.1109/icsipa.2011.6144062

Design of multivariable fractional order PID controller using covariance matrix adaptation evolution strategy, Arch. Control Sci, 2014.
http://dx.doi.org/10.2478/acsc-2014-0014

S. Skogestad, “Modelling and dynamic simulation for process control,” Model. Optim. Chem. Process, 2003.
http://dx.doi.org/10.1016/s0959-1524(02)00062-8

T. Garna, K. Bouzrara, J. Ragot, and H. Messaoud, “Nonlinear system modeling based on bilinear Laguerre orthonormal bases.,” ISA Trans., vol. 52, no. 3, pp. 301–17, 2013.
http://dx.doi.org/10.1016/j.isatra.2012.12.001

L. Wang, Model Predictive Control System Design and Implementation Using MATLAB. 2009.
http://dx.doi.org/10.1007/978-1-84882-331-0

L. Wang, “Discrete model predictive controller design using Laguerre functions,” J. Process Control, vol. 14, pp. 131–142, 2004.
http://dx.doi.org/10.1016/s0959-1524(03)00028-3

P. Mishra, V. Kumar, and K. P. S. Rana, “A fractional order fuzzy PID controller for binary distillation column control,” Expert Syst. Appl., vol. 42, no. 22, pp. 8533–8549, 2015.
http://dx.doi.org/10.1016/j.eswa.2015.07.008

J. Fernandez De Canete, a. Garcia-Cerezo, I. Garcia-Moral, P. Del Saz, and E. Ochoa, “Object-oriented approach applied to ANFIS modeling and control of a distillation column,” Expert Syst. Appl., vol. 40, no. 14, pp. 5648–5660, 2013.
http://dx.doi.org/10.1016/j.eswa.2013.04.012

Carpinelli, G., Khormali, S., Mottola, F., Proto, D., Load Leveling with Electrical Storage Systems: a Two-Step Optimization Procedure, (2013) International Review of Electrical Engineering (IREE), 8 (2), pp. 729-736.

Ravi, V., Thyagarajan, T., Maheshwaran, G., Modelling and Controlling of Two Conical Tank Interacting Level System Using Regime Based Multi Model Adaptive Concept, (2013) International Review on Modelling and Simulations (IREMOS), 6 (2), pp. 639-648.

Kulkarni, S., Wagh, S., Singh, N., Challenges in Model Predictive Control Application for Transient Stability Improvement Using TCSC, (2015) International Review of Automatic Control (IREACO), 8 (2), pp. 163-169.
http://dx.doi.org/10.15866/ireaco.v8i2.5562

Houda, B., Khadija, D., Said, N., New Discrete Sliding Mode Controller with Predictive Sliding Function, (2013) International Review of Automatic Control (IREACO), 6 (4), pp. 530-536.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize