Open Access Open Access  Restricted Access Subscription or Fee Access

Enhanced Sliding Mode MPPT and Power Control for Wind Turbine Systems Driven DFIG (Doubly-Fed Induction Generator)


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v9i4.9739

Abstract


The control strategy that uses maximum power point tracking (MPPT) technique of the wind turbine essentially relies on the power of the wind, the turbine power curve and the ability of the generator to adjust itself to any conditions related to the wind fluctuations. This article proposes a new robust and efficient nonlinear speed control strategy of the turbine-doubly fed induction generator system in order to improve the control and the energy performances of this system. Achieving these goals, a nonlinear Sliding Mode Control (SMC) is implemented, which includes two control blocks: the first one uses the MPPT strategy to adapt the turbine speed with the generator speed value by keeping the power coefficient at maximum value via the second sliding mode control. The second block ensures regulation of the generator’s active and reactive powers by using the integral sliding mode control. The simulations realized in Matlab/Simulink demonstrate the elimination of the chattering phenomenon, a good pursuit of the references and good stability.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


MPPT Strategy; Second Order Sliding Mode Control; Integral Sliding Mode Control

Full Text:

PDF


References


F. Blaabjerg et Ke Ma, «Future on Power Electronics for Wind Turbine Systems», IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no 3, p. 139-152, sept. 2013.
http://dx.doi.org/10.1109/jestpe.2013.2275978

Z. Chen and H. Li, “Overview of different wind generator systems and their comparisons”, IET Renew. Power Gener., vol. 2, no 2, p. 123-138, juin 2008.
http://dx.doi.org/10.1049/iet-rpg:20070044

L. Holdsworth, X. G. Wu, J. B. Ekanayake, and N. Jenkins, ‘Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances’, in Generation, Transmission and Distribution, IEE Proceedings-, 2003, vol. 150, pp. 343–352.
http://dx.doi.org/10.1049/ip-gtd:20030251

H. Polinder, F. F. A. Van Der Pijl, G.-J. De Vilder, et P. J. Tavner, “Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines”, IEEE Trans. Energy Convers., vol. 21, no 3, p. 725-733, sept. 2006.
http://dx.doi.org/10.1109/tec.2006.875476

S. Müller, M. Deicke, et R. W. De Doncker, “Doubly fed induction generator systems for wind turbines”, Ind. Appl. Mag. IEEE, vol. 8, no 3, p. 26–33, 2002.
http://dx.doi.org/10.1109/2943.999610

N. Senthil Kumar et J. Gokulakrishnan, “Impact of FACTS controllers on the stability of power systems connected with doubly fed induction generators”, Int. J. Electr. Power Energy Syst., vol. 33, no 5, p. 1172-1184, juin 2011.
http://dx.doi.org/10.1016/j.ijepes.2011.01.031

J. A. Baroudi, V. Dinavahi, and A. M. Knight, ‘A review of power converter topologies for wind generators’, Renew. Energy, vol. 32, no. 14, pp. 2369–2385, Nov. 2007.
http://dx.doi.org/10.1016/j.renene.2006.12.002

A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, et F. Blaabjerg, «Evaluation of Current Controllers for Distributed Power Generation Systems», IEEE Trans. Power Electron., vol. 24, no 3, p. 654-664, mars 2009.
http://dx.doi.org/10.1109/tpel.2009.2012527

F. Poitiers, T. Bouaouiche, et M. Machmoum, “Advanced control of a doubly-fed induction generator for wind energy conversion”, Electr. Power Syst. Res., vol. 79, no 7, p. 1085-1096, juill. 2009.
http://dx.doi.org/10.1016/j.epsr.2009.01.007

M. Boutoubat, L. Mokrani, et M. Machmoum, “Control of a wind energy conversion system equipped bya DFIG for active power generation and power quality improvement”, Renew. Energy, vol. 50, p. 378-386, févr. 2013.
http://dx.doi.org/10.1016/j.renene.2012.06.058

D. Kairous et R. Wamkeue, “DFIG-based fuzzy sliding-mode control of WECS with a flywheel energy storage”, Electr. Power Syst. Res., vol. 93, p. 16-23, déc. 2012.
http://dx.doi.org/10.1016/j.epsr.2012.07.002

O. Soares, H. Gonçalves, A. Martins, and A. Carvalho, ‘Nonlinear control of the doubly-fed induction generator in wind power systems’, Renew. Energy, vol. 35, no. 8, pp. 1662–1670, Aug. 2010.
http://dx.doi.org/10.1016/j.renene.2009.12.008

V. R. R. Rudraraju, C. Nagamani, et G. S. Ilango, “A control scheme for improving the efficiency of DFIG at low wind speeds with fractional rated converters”, Int. J. Electr. Power Energy Syst., vol. 70, p. 61-69, sept. 2015.
http://dx.doi.org/10.1016/j.ijepes.2015.01.032

J. Liu, H. Meng, Y. Hu, Z. Lin, et W. Wang, “A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account”, Energy Convers. Manag., vol. 101, p. 738-748, sept. 2015.
http://dx.doi.org/10.1016/j.enconman.2015.06.005

B. Yang, L. Jiang, L. Wang, W. Yao, et Q. H. Wu, «Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine», Int. J. Electr. Power Energy Syst., vol. 74, p. 429-436, janv. 2016.
http://dx.doi.org/10.1016/j.ijepes.2015.07.036

M. Nasiri, J. Milimonfared, et S. H. Fathi, “Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines”, Energy Convers. Manag., vol. 86, p. 892-900, oct. 2014.
http://dx.doi.org/10.1016/j.enconman.2014.06.055

K. Belmokhtar, M. L. Doumbia, et K. Agbossou, “Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)”, Energy, vol. 76, p. 679-693, nov. 2014.
http://dx.doi.org/10.1016/j.energy.2014.08.066

S. Abdeddaim et A. Betka, “Optimal tracking and robust power control of the DFIG wind turbine”, Int. J. Electr. Power Energy Syst., vol. 49, p. 234-242, juill. 2013.
http://dx.doi.org/10.1016/j.ijepes.2012.12.014

S. Kahla, Y. Soufi, M. Sedraoui, et M. Bechouat, «On-Off control based particle swarm optimization for maximum power point tracking of wind turbine equipped by DFIG connected to the grid with energy storage», Int. J. Hydrog. Energy, vol. 40, no 39, p. 13749-13758, oct. 2015.
http://dx.doi.org/10.1016/j.ijhydene.2015.05.007

B. Beltran, M. E. H. Benbouzid, and T. Ahmed-Ali, ‘Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine’, IEEE Trans. Energy Convers., vol. 27, no. 2, pp. 261–269, Jun. 2012.
http://dx.doi.org/10.1109/tec.2011.2181515

T. Ghennam, K. Aliouane, F. Akel, B. Francois, et E. M. Berkouk, “Advanced control system of DFIG based wind generators for reactive power production and integration in a wind farm dispatching”, Energy Convers. Manag., vol. 105, p. 240-250, nov. 2015.
http://dx.doi.org/10.1016/j.enconman.2015.07.058

S. Abdeddaim et A. Betka, “Optimal tracking and robust power control of the DFIG wind turbine”, Int. J. Electr. Power Energy Syst., vol. 49, p. 234-242, juill. 2013.
http://dx.doi.org/10.1016/j.ijepes.2012.12.014

V. R. R. Rudraraju, C. Nagamani, et G. S. Ilango, “A control scheme for improving the efficiency of DFIG at low wind speeds with fractional rated converters”, Int. J. Electr. Power Energy Syst., vol. 70, p. 61-69, sept. 2015.
http://dx.doi.org/10.1016/j.ijepes.2015.01.032

S. Mefoued, “A second order sliding mode control and a neural network to drive a knee joint actuated orthosis”, Neurocomputing, vol. 155, p. 71-79, mai 2015.
http://dx.doi.org/10.1016/j.neucom.2014.12.047

İ. Eker, ‘Second-order sliding mode control with experimental application’, ISA Trans., vol. 49, no. 3, pp. 394–405, Jul. 2010.
http://dx.doi.org/10.1016/j.isatra.2010.03.010

A. Levant, ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, vol. 76, no. 9–10, pp. 924–941, Jan. 2003.
http://dx.doi.org/10.1080/0020717031000099029

M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, et L. Fridman, “Integral Sliding Mode Control for Nonlinear Systems With Matched and Unmatched Perturbations”, IEEE Trans. Autom. Control, vol. 56, no 11, p. 2699-2704, nov. 2011.
http://dx.doi.org/10.1109/tac.2011.2159420

X. Zheng, X. Jian, D. Wenzheng, et C. Hongjie, “Nonlinear Integral Sliding Mode Control for a Second Order Nonlinear System”, J. Control Sci. Eng., vol. 2015, p. 1-7, 2015.
http://dx.doi.org/10.1155/2015/218198

R. Saravanakumar et D. Jena, “Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine”, Int. J. Electr. Power Energy Syst., vol. 69, p. 421-429, juill. 2015.
http://dx.doi.org/10.1016/j.ijepes.2015.01.031

Meo, S., Sorrentino, V., Discrete-time integral variable structure control of grid-connected PV inverter, (2015) Journal of Electrical Systems, 11 (1), pp. 102-116.

Meo, S., Sorrentino, V., Discrete–time integral sliding mode control with disturbances compensation and reduced chattering for PV grid–connected inverter, (2015) Journal of Electrical Engineering, 66 (2), pp. 61-69.

Meo, S., Sorrentino, V., Zohoori, A., Vahedi, A., Second-order sliding mode control of a smart inverter for renewable energy system, (2014) International Review of Electrical Engineering (IREE), 9 (6), pp. 1090-1096.
http://dx.doi.org/10.15866/iree.v9i6.5368

Zohoori, A., Vahedi, A., Meo, S., Sorrentino, V., An Improved AHP Method for Multi-Objective Design of FSPM Machine for Wind Farm Applications, (2016) Journal of Intelligent and Fuzzy Systems, 30 (1), pp. 159-169
http://dx.doi.org/10.3233/ifs-151742

Zohoori, A., Vahedi, A., Noroozi, M.A., Meo, S., A new outer-rotor flux switching permanent magnet generator for wind farm applications, (2016) Wind Energy. Article in Press.
http://dx.doi.org/10.1002/we.1986


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize