Open Access Open Access  Restricted Access Subscription or Fee Access

Design and Implementation of a Low Cost Automatic Variable Load and Data Acquisition for Characterization of Photovoltaic Modules Simultaneously


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v9i1.7831

Abstract


In this paper we describe a programmable electrical low-cost system, destined to characterize the functioning of photovoltaic modules and to compare their performances under variable climatic conditions (temperature, humidity). The system is based on a circuit compound of several resistors, sensors and an Arduino board programmed to sweep all the resistances, in intervals of precise time and this after choosing each photovoltaic module, acquiring data from sensors and sending them to the computer. It is very important to mention that the developed system is physically separated by the production unit and it provides one characteristic in one minute or less, a period during which all parameters are assumed to be invariant. The number of points (resistors) can be also increased by simply changing the program inside electronic board. The experimental results are in agreement with the data provided by the manufacturer and the numerical simulation. Finally it can be noted that this device is less expensive and feasible to automatic measurements. Thus it can be considered as a practical solution especially for experiences stretching over long periods.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Automatic Control; Characterization; PC-Controlled Switch; PV Modules; Variable Load

Full Text:

PDF


References


Blorfan, A., Sturtzer, G., Flieller, D., Wira, P., Mercklé, J., An adaptive control algorithm for maximum power point tracking for photovoltaic energy conversion systems - A comparative study, (2014) International Review of Electrical Engineering (IREE), 9 (3), pp. 559-565.

Hidouri, N., A new direct power control scheme applied to a grid connected fuzzy-MPPT-controlled photovoltaic system, (2014) International Review on Modelling and Simulations (IREMOS), 7 (5), pp. 845-853.
http://dx.doi.org/10.15866/iremos.v7i5.3422

Mohamed, R.G., Ibrahim, D.K., Youssef, H.K., Rakha, H.H., Optimal sizing and economic analysis of different configurations of photovoltaic systems, (2014) International Review of Electrical Engineering (IREE), 9 (1), pp. 146-156.

Duong, M.Q., Dolara, A., Grimaccia, F., Mussetta, M., Zich, R.E., Le, K.H., Hybrid structure and fuzzy logic high precision control for non-geostationary satellite antenna tracking, (2015) International Journal on Communications Antenna and Propagation (IRECAP), 5 (5), pp. 290-296.
http://dx.doi.org/10.15866/irecap.v5i5.5921

V. Doru, M. Sorin, B. Constantin, B. Marius. PV systems modelling and optimal control. Energy Conversion and Management, Vol. 84: 448–456, 2014.
http://dx.doi.org/10.1016/j.enconman.2014.04.032

A. Oueslati, S. Ayachi, Performance of a Wind System: Case Study of Sidi Daoud Site. Journal of Engineering Research and Applications, Vol. 4: 38-42, 2014

I. MS, M. Moghavvemi, M.TMI. Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management Vol. 73: 10–25, 2013.
http://dx.doi.org/10.1016/j.enconman.2013.03.033

W. Hoffmann and S. Teske, Solar Generation I-V, Greenpeace, EPIA, Hamburg; 2007.
http://dx.doi.org/10.1108/meq.2007.08318aae.003

EPIA, Global Market Outlook for Photovoltaic’s until 2014; May 2010.

R. Eke, H. Demircan. Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Conversion and Management, Vol. 65: 580–586, 2013.
http://dx.doi.org/10.1016/j.enconman.2012.09.007

A.J. Carr, T.L. Pryor. A comparison of the performance of different PV module types in temperate climates. Solar Energy, Vol. 76: 285–294, 2004.
http://dx.doi.org/10.1016/j.solener.2003.07.026

B. Tripathi, P. Yadav, S. Rathod, M. Kumar. Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India. Energy Conversion and Management, Vol. 80: 97–102, 2014.
http://dx.doi.org/10.1016/j.enconman.2014.01.013

D.N. Vizireanu, S.V. Halunga, International Journal of Electronics, Vol. 99 (1): 149–151, (2012).
http://dx.doi.org/10.1080/00207217.2011.609983

The Arduino Mega 2560. <>. (20/04/2015)

J.C. Chauveau, G. Chevalier, B. Chevalier. Mémotech électronique composantes, 4ème édition, (Edition CASTEILLA, 1997).

S. Amos, M. James. Principales of Transistor circuits, ninth (édition 2000).

F.Manneville, J-Esquieu. Théorie du signal et composants.(tome1), (Dunod, paris ,1990).

Electronic Components Datasheet Search. .

L.A. Hecktheuer, A. Krenzinger, C.W.M. Prieb, ‘Methodology for Photovoltaic Modules Characterization and Shading Effects Analysis’, Journal of the Brazilian Society of Mechanical Sciences, Vol. 24(1): 26 -32, 2002.
http://dx.doi.org/10.1590/s0100-73862002000100004

Rosell, M. Ibanez, ‘Modelling Power Output in Photovoltaic Modules for Outdoor Operating Conditions’, Energy Conversion and Management, Vol. 47(15-16): 2424 –2430, 2006.
http://dx.doi.org/10.1016/j.enconman.2005.11.004

U. Eicker. Solar Technologies for Buildings. (New York Wiley, 2003).
http://dx.doi.org/10.1002/0470868341

P. Singh, S.N. Singh, M. Lal and M. Husain. Temperature Dependence of I–V Characteristics and Performance Parameters of Silicon Solar Cells. Solar Energy Materials and Solar Cells, Vol. 92 (12): 1611 - 1616, 2008.
http://dx.doi.org/10.1016/j.solmat.2008.07.010

J. P. Charles, G. Bmguier, P. Mialhe et R. Ruas, "Effet de l'Irradiation par des Électrons sur la distribution des défaults dans des photopiles solaires destinées au spatial", Annales de Physique, Vol. 14: 329-34, December 1989.

S. Yadir. Extraction des paramètres physiques d’une cellule solaire. Etude de leur influence sur le rendement. Thesis, Chouaib Doukkali, Faculty of science, El jadida, Morocco, 2014.

K. Ishaque, Z. Salam, Saad Mekhilef, Amir Shamsudin. Parameter extraction of solar photovoltaic modules using penalty-based. Applied Energy, Vol. 99: 297–308, 2012.
http://dx.doi.org/10.1016/j.apenergy.2012.05.017

M. Zagrouba, A. Sellami, M.Bouaıcha, M. Ksouri. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar Energy, Vol. 84: 860–866, 2010.
http://dx.doi.org/10.1016/j.solener.2010.02.012

F. Masmoudi, F. Ben Salem, N. Derbel. Identification of Internal Parameters of a Mono-Crystalline Photovoltaic Cell Models and Experimental Ascertainment. International journal of renewable energy research, Vol. 4: 840-848, 2014.

D. M. Spinner, Instruction Manuel, Solar Measuring System for Characterization of Solar Cells (V 2.0 1/2003), Freiburg, Germany; 2003.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize