Open Access Open Access  Restricted Access Subscription or Fee Access

Feedforward Control Design Based on Laguerre Network Modelling

Jozef Škultéty(1), Eva Miklovičová(2*), Ruth Bars(3)

(1) Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Institute of Control and Industrial Informatics, Ilkovičova 3, 812 19 Bratislava., Slovakia
(2) Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Institute of Control and Industrial Informatics, Ilkovičova 3, 812 19 Bratislava., Slovakia
(3) Budapest University of Technology & Economics, Department of Automation and Applied Informatics., Hungary
(*) Corresponding author


DOI: https://doi.org/10.15866/ireaco.v7i5.3116

Abstract


In this paper feedforward control algorithm is proposed to enhance the performances of the model reference control. The control design is based on discrete Laguerre networks which represent a simple and useful tool for the approximation of signals or systems. In this approach both the system model and the controller are expressed in the form of Laguerre network. The model reference control is an open-loop control strategy which aims at obtaining an optimal reference signal tracking. To ensure unmeasured disturbance rejection the control loop is closed using an additional integrating effect. A feedforward path is added to reject the effect of measurable disturbance with known dynamics.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Model Reference Control; Feedforward Control; Laguerre Network

Full Text:

PDF


References


F. Shinskey, Process Control Systems. Application Design Adjustment (McGraw- Hill, New York, 1996).
http://dx.doi.org/10.1002/apj.5500040312

J. L. Guzmán, T. Hägglund, Simple Tuning Rules for Feedforward Compensators, Journal of Process Control, Vol. 21: 92-102, 2011.
http://dx.doi.org/10.1016/j.jprocont.2010.10.007

Suresh, M., Selvakumar, C., Hemamalini, R.R., Design of feedforward controller for a FOPDT nonlinear thermal process, (2012) International Review on Modelling and Simulations (IREMOS), 5 (6), pp. 2507-2511.

M. Sternad, T. Söderström, LQG-Optimal Feedforward Regulators, Automatica, Vol. 24 (Issue. 4): 557-561, 1988.
http://dx.doi.org/10.1016/0005-1098(88)90100-8

T. Söderström, Feedforward, Correlated Disturbances and Identification, Automatica, Vol. 35: 1565-1571, 1999.
http://dx.doi.org/10.1016/s0005-1098(99)00070-9

M. J. Grimble, Two-degrees of Freedom Feedback and Feedforward Optimal Control of Multivariable Stochastic Systems, Automatica, Vol. 24(Issue 6): 809-817, 1988.
http://dx.doi.org/10.1016/0005-1098(88)90057-x

R. Vilanova, O. Arrieta, P. Ponsa, IMC Based Feedforward Controller Framework for Disturbance Attenuation on Uncertain Systems, ISA Transactions, Vol. 48: 439-448, 2009.
http://dx.doi.org/10.1016/j.isatra.2009.05.007

D. S. Carrasco, G. C. Goodwin, Feedforward Model Predictive Control, Annual Reviews in Control, Vol. 35: 199-206, 2011.
http://dx.doi.org/10.1016/j.arcontrol.2011.10.007

A. Pawlowski, J. L. Guzmán, J. E. Normey-Rico, M. Berenguela, Improving Feedforward Disturbance Compensation Capabilities in Generalized Predictive Control, Journal of Process Control, Vol. 2: 527-539, 2012.
http://dx.doi.org/10.1016/j.jprocont.2012.01.010

E. J. Adam, J. L. Marchetti, Designing and Tuning Robust Feedforward Controllers, Computers and Chemical Engineering, Vol. 28: 1899–1911, 2004.
http://dx.doi.org/10.1016/j.compchemeng.2004.03.005

A. Faanes, S. Skogestad, Feedforward Control Under the Presence of Uncertainty, European Journal of Control, Vol. 10: 30-46, 2004.
http://dx.doi.org/10.3166/ejc.10.30-46

S. Messineo, A. Serrani, Adaptive Feedforward Disturbance Rejection in Nonlinear Systems, Systems & Control Letters, Vol. 58: 576-583, 2009.
http://dx.doi.org/10.1016/j.sysconle.2009.03.010

P. S. C. Heuberger, P. M. J. Van den Hof, B. Wahlberg. (Eds.), Modelling and Identification with Rational Orthogonal Basis Function (Springer, 2005).
http://dx.doi.org/10.1007/1-84628-178-4

L. Wang, Model Predictive Control System Design and Implementation Using Matlab (Springer, 2009).
http://dx.doi.org/10.1007/978-1-84882-331-0

Skultety, J., Miklovicova, E., Bars, R., Predictive control based on discrete laguerre network, (2013) International Review of Automatic Control (IREACO), 6 (5), pp. 558-564.
http://dx.doi.org/10.1109/pc.2013.6581434

R. Bars, I. Mayer, Model-reference control of systems identified by the Laguerre orthonormal structure, IFAC symp. of Identification and System Parameters Estimation, Vol. 3, pp. 430-443, Tbilisi, Georgia, 1976.

J. Škultéty, E. Miklovičová, R. Bars, Analysis of Model Reference Control Based on Modified Laguerre Network with Integrator. 14th International Carpathian Control Conference, pp. 350-355, Rytro, Poland, 2013.
http://dx.doi.org/10.1109/carpathiancc.2013.6560568

J. Škultéty, E. Miklovičová, R. Bars, Predictive Model Reference Control Based on Discrete Laguerre Network with Integrator, International Conference on Process Control, PC 2013, pp. 341-346, Štrbské pleso, Slovakia.
http://dx.doi.org/10.1109/pc.2013.6581434

R. Bars, I. Mayer, Algorithms for Evaluating the Laguerre and x-expansion Coefficients of Transfer Functions. Problems of Control and Information Theory, Vol. 6 (Issue 3): 249-260, 1977.

M. Mrosko, J. Škultéty, E. Miklovičová, Laguerre Network Implementation in Industrial Control Systems. 15th International Carpathian Control Conference - ICCC 2014, pp. 367-372, Velke Karlovice, Czech Republic, 2014.
http://dx.doi.org/10.1109/carpathiancc.2014.6843629


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize