Open Access Open Access  Restricted Access Subscription or Fee Access

Reactive Power Planning for Maximum Load Margin Improvement Using Fast Artificial Immune Support Vector Machine (FAISVM)


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v7i5.2361

Abstract


Load margin improvement is an important issue in power system planning and operation. This paper, first, presents a newly voltage stability index called Voltage Stability Condition Indicator (VSCI) to evaluate the voltage stability state of load buses in a system. It also proposes a fast optimization algorithm for reactive power planning problem (RPP) through Fast Artificial Immune Support Vector Machine (FAISVM). FAISVM is a hybrid algorithm that incorporates the application of Artificial Immune System (AIS) and Support Vector Machine (SVM) in solving RPP problems. The newly proposed algorithm can determine the optimal tap settings of tap changing transformers, the value of reactive power injection at the reactive power sources and the injection at the reactive power generator buses. The performances of the techniques proposed were verified using the IEEE 30-bus test system and compared with another newly developed hybrid Evolutionary Support Vector Machine (ESVM). The simulation results have shown that FASIVM outperformed ESVM in terms of maximum load margin improvement and computation time significantly and also reduce active power losses.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Reactive Power Planning; Maximum Load Margin Improvement; Artificial Immune System (AIS); Support Vector Machines (SVM); Voltage Stability Index

Full Text:

PDF


References


A. M. Ramly, N. Aminudin, I. Musirin, D. Johari, N. Hashim, Reactive Power Planning for transmission loss minimization, 5th International Power Engineering and Optimization Conference (PEOCO), 2011, pp. 116-120.
http://dx.doi.org/10.1109/peoco.2011.5970457

L. D. Arya, S. C. Choube, M. Shrivastava, D. P. Kothari, Loadability margin enhancement using co-ordinated aggregation based particle swarm optimization (CAPSO), International Journal of Electrical Power & Energy Systems, vol. 32, 2010, pp. 975-984.
http://dx.doi.org/10.1016/j.ijepes.2010.02.007

D. Devaraj and J. P. Roselyn, Genetic algorithm based reactive power dispatch for voltage stability improvement, International Journal of Electrical Power & Energy Systems, vol. 32, 2010, pp. 1151-1156.
http://dx.doi.org/10.1016/j.ijepes.2010.06.014

N. Aminudin, Maximum Loadability Enhancement of Power System Using Multiagent Immune Evolutionary Programming Optimization Technique, Master of Science, Faculty of Engineering, Universiti Teknologi Mara, Shah Alam, 2009.

N. Aminudin,T. K. A. Rahman, I. Musirin, D. Johari, Multiagent immune evolutionary programming based technique for power system loadability improvement using ORPP, Proceedings of the 8th WSEAS International Conference on Artificial intelligence, knowledge engineering and data bases, Cambridge, UK, 2009.

A. A. Cuello-Reyna and J. R. Cedeno-Maldonado, A Differential Evolution Approach to Optimal Reactive Power Planning, Transmission & Distribution Conference and Exposition: Latin America, 2006. TDC '06. IEEE/PES, 2006, pp. 1-7.
http://dx.doi.org/10.1109/tdcla.2006.311442

A. A. A. E. Ela, M. A. Abido, S. R. Spea, Differential evolution algorithm for optimal reactive power dispatch, Electric Power Systems Research, vol. 81, 2011, pp. 458-464.
http://dx.doi.org/10.1016/j.epsr.2010.10.005

A. Rabiee, M. Vanouni, M. Parniani, Optimal reactive power dispatch for improving voltage stability margin using a local voltage stability index, Energy Conversion and Management, vol. 59, 2012, pp. 66-73.
http://dx.doi.org/10.1016/j.enconman.2012.02.017

N. Aziz, T.K. Abdul Rahman, Z. Zakaria, A New Voltage Stability Condition Indicator (VSCI) for Power System Analysis, 8th Jordanian International Electrical and Electronics Engineering Conference, (JIEEEC 2013), 2013.

P. Kundur, Power System Stability and Control. (New york: McGraw Hill, 1994).

I. Musirin, Novel Techniques Voltage Stability Assessment and Improvement in Power System, Ph.D Dissertation, Universiti Teknologi Mara, Malaysia, 2004.

J. R. Al-Enezi, M. F. Abod, S. Alsharhan, Artificial Immune Systems – Models, Algorithms and Applications, International Journal of Research and Reviews in Applied Sciences (IJRRAS) Vol. 3, No.2, 2010.

C. Zhenguo and Z. Guanghua, Support Vector Machines Improved by Artificial Immunisation Algorithm for Intrusion Detection, in Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on, 2009, pp. 1-4.
http://dx.doi.org/10.1109/iciecs.2009.5366324

D. Sheng and L. Shunxin, Clonal Selection Algorithm for Feature Selection and Parameters Optimization of Support Vector Machines, in Second International Symposium on Knowledge Acquisition and Modeling, KAM '09, 2009, pp. 17-20.
http://dx.doi.org/10.1109/kam.2009.86

B. Scholkopf, C. J. C. Burges, A. Smola, Advances in Kernel Methods – Support Vector Learning, (Cambridge: MIT Press, 1999).
http://dx.doi.org/10.1016/s0925-2312(01)00684-1

B. Scholkopf and A. Smola, Learning with Kernels. (Cambridge MA: MIT Press, 2002)
http://dx.doi.org/10.1145/1027914.1027921

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Method. (Cambridge University Press, 2000).
http://dx.doi.org/10.1017/cbo9780511801389

J. Valyon and G. Horváth, "A Robust LS-SVM Regression," training, vol. 500, p. 1, 2005.

J. D. Brabanter, LS-SVM Regression Modelling and its Applications, Ph.D Dissertation, Katholieke University of Leuven, Belgium, 2004.

K. De Brabanter, et al., LS-SVMlab Toolbox User’s Guide, Katholieke Universiteit Leuven2010.

K. De Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. De Brabanter, K. Pelckmans, B. De Moor, J. Vandewalle, J.A.K. Suykens, LS-SVMlab Toolbox User’s Guide Version 1.8, Katholieke Universiteit Leuven, KU Leuven Leuven, Belgium2011.

K. Pelckmans, et al., LS-SVMlab toolbox user’s guide, Pattern recognition letters, vol. 24, pp. 659-675, 2003.

M. Nizam, A. Mohamed, A. Hussain, Dynamic Voltage Collapse Prediction on a Practical Power System Using Power Transfer Stability Index, in 5th Student Conference on Research and Development, SCOReD 2007, 2007, pp. 1-6.
http://dx.doi.org/10.1109/scored.2007.4451398

N. F. Ab Aziz, P. L. Lewin, L. Hao,, Analysis of Partial Discharge Measurement Data Using a Support Vector Machine, in 5th Student Conference on Research and Development, SCOReD 2007., 2007, pp. 1-6.
http://dx.doi.org/10.1109/scored.2007.4451430

Z. Chen and G. Zhang, Support Vector Machines Improved by Artificial Immunisation Algorithm for Intrusion Detection, International Conference on Information Engineering and Computer Science, 2009. ICIECS 2009. 2009, pp. 1-4.
http://dx.doi.org/10.1109/iciecs.2009.5366324

L. Hao and P. L. Lewin, Partial discharge source discrimination using a support vector machine, Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 17, pp. 189-197, 2010.
http://dx.doi.org/10.1109/tdei.2010.5412017

L. Hao, P. L. Lewin, S. J. Dodd, "Comparison of support vector machine based partial discharge identification parameters," in Electrical Insulation, 2006. Conference Record of the 2006 IEEE International Symposium on, 2006, pp. 110-113.
http://dx.doi.org/10.1109/elinsl.2006.1665269

L. Hao, P. L. Lewin, Y. Tian, S. J. Dodd, Partial discharge identification using a support vector machine, 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, CEIDP '05. 2005, pp. 414-417.
http://dx.doi.org/10.1109/ceidp.2005.1560708

B. Ravikumar, D. Thukaram, H. P. Khinca, Application of support vector machines for fault diagnosis in power transmission system, International Conference on Generation, Transmission & Distribution, IET, vol. 2, pp. 119-130, 2008.
http://dx.doi.org/10.1049/iet-gtd:20070071

A. R. Minhat, I. Musirin, M. M. Othman, Evolutionary programming based technique for secure operating point identification in static voltage stability assessment, Journal of Artificial Intelligence, vol. 3, pp. 152-160, 2010.
http://dx.doi.org/10.3923/jai.2008.12.20

Damiano, A., Gatto, G., Marongiu, I., Meo, S., Perfetto, A., Serpi, A., Single-stage grid connected PV inverter with active and reactive power flow control via PSO-PR based current controlled SVPWM, (2012) International Review of Electrical Engineering (IREE), 7 (4), pp. 4647-4654.

Bracale, A., Caramia, P., Carpinelli, G., Meo, S., A low voltage Smart Grid control strategy with Power Quality issues, (2011) International Review of Electrical Engineering (IREE), 6 (6), pp. 2704-2712.

Amoresano, A., De Sio, P., Gimelli, A., Langella, G., Meo, S., Grid connected CSP-ORC plants for residential application, (2013) International Review on Modelling and Simulations (IREMOS), 6 (5), pp. 1468-1476.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize