Open Access Open Access  Restricted Access Subscription or Fee Access

Computational Tracing of BVI Phenomena on Helicopter Rotor Disk


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v16i4.24442

Abstract


This paper presents a computational methodology for tracing the locations of Blade Vortex Interaction (BVI) phenomena on a helicopter rotor disk. This methodology utilizes Vortex Element Method for rotor free wake computations. Wake vortices are modeled by a series of discrete vortex elements and induced velocity on rotor disk is calculated for the distorted wake geometry, integrating Biot-Savart law in closed form over each one of them. Bound circulation variations and unsteady blade airloading as a result of the nonuniform induced downwash are computed by blade element method. Wake roll up process, vortex core modeling and elastic blade motion are some of the aerodynamic topics modeled with special care in the developed procedure. BVI locations are detected and the phenomena are categorized as parallel, perpendicular and oblique regarding their orientation relative to rotor blade. The corresponding intensity and locus for each category are calculated. By these means, specific BVI phenomena can be isolated and their influence on blade downwash and airloads distribution can be demonstrated. The computational results of BVIs effects on blade airloading are compared with experimental data. These data are derived from model-rotor wind tunnel tests, performed in the duration of joined European research programs.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Helicopters; Rotor Aerodynamics; Blade Vortex Interactions; Vortex Core

Full Text:

PDF


References


M. B. Horner, R. A. Galbraith, F. N. Coton, J. N. Stewart, and I. Grant, Examination of Vortex Deformation During Blade-Vortex Interaction, AIAA Journal, Vol. 34, No. 6, (1996), 1188-1194.

K. S. Wittmer, and W. J. Devenport, Effects of Perpendicular Blade-Vortex Interaction Part1: Turbulence Structure and Development, AIAA Journal, Vol. 37, No. 7, (1999), 805-817.

C. Kitaplioglu, and F. Caradonna, Aerodynamics and Acoustics of Blade-Vortex Interaction Using an Independently Generated Vortex, American Helicopter Society Aeromechanics Specialists Conference, San Francisco CA, (1994).

G. Rahier, and Y. Delrieux, Influence of Vortex Models on Blade-Vortex Interaction Load and Noise Predictions, Journal of American Helicopter Society, Vol. 44, No. 1, (1999), 26-33.

J. A. Rule, R. J. Epstein, and D. B. Bliss, Unsteady Compressible Boundary Element Calculations of Parallel Blade-Vortex Interaction, Journal of American Helicopter Society, Vol. 44, No. 4, (1999), 302-311.

F. Caradonna, C. Kitaplioglou, M. McCluer, J. Baeder, G. J. Leishman, C. Berezin, J. Visintainer, J. Bridgeman, C. Burley, R. Epstein, A. Lyrintzis, E. Koutsavdis, G. Rahier, Y. Delrieux, J. Rule, and D. Bliss, Methods for the prediction of blade-vortex interaction noise, Journal of American Helicopter Society, Vol. 45, No. 4, (2000), 303-317.

T. F. Brooks, E. R. Booth, D. D. Boyd, W. R. Splettstoesser, K. J. Schultz, R. Kube, G. H. Niesel, and O. Sterby, Analysis of a Higher Harmonic Control Test to Reduce Blade Vortex Interaction Noise, Journal of Aircraft, Vol. 31, No 6, (1994), 1341-1349.

B. G. Van der Wall, The Effect of HHC on the Vortex Convection in the Wake of a Helicopter Rotor, Aerospace Science and Technology, Vol. 4, No 5, (2000), 321-336.

S. A. Jacklin, K. Q. Nguyen, A. Blaas, and P. Richter, Full-Scale Wind Tunnel Test of a Helicopter Individual Blade Control System, American Helicopter Society 50th Annual Forum Proceedings, Washington DC, May 11-13, 579-596, (1994).

W. R. Splettstoesser, K. J. Schultz, B. G. Van der Wall, H. Bushholz, W. Gembler, and G. Niesl, The Effect of Individual Blade Pitch Control on BVI Noise - Comparison of Flight Test and Simulation Results, Paper No. AC 07, 24th European Rootorcraft Forum, Marseilles, France, September 15-17, (1998).

M. Gervais, and F. H. Schmitz, Tiltrotor BVI Noise Reduction Through Flight Trajectory Management and Configuration Control, Journal of American Helicopter Society, Vol. 49, No. 4, (2004), 436-444.

B. Munsky, and F. Gandhi, Analysis of Helicopter Blade-Vortex Interaction Noise with Flight Path or Attitude Modification, Journal of American Helicopter Society, Vol. 50, No. 2, (2005), 123-137.

Y. H. Yu, Rotor Blade-Vortex Interaction Noise: Generating Mechanisms and its Control Concepts, Proceedings of the American Helicopter Society 2nd International Aeromechanics Spesiaqlists Conference, Bridgeport, Connecticut, October 11-13, (1995).

W. Z. Stepniewski, N. Keys, Rotary Wing Aerodynamics, (Dover, New York, 1984).

W. Johnson, Helicopter Theory, (Dover, New York, 1984).

K. W. Mangler, and H. B. Squire, The Induced Velocity Field of a Rotor, R&M 2642, (1950).

V. Y. Baskin, L. S. Vildgrude, Y. S. Vozhdayey, and G. I. Maykapar, Theory of Lifting Airscrews, NASA TTF-823, Feb, (1976).

T. S. Beddoes, A Wake Model for High Resolution Airloads, U.S. Army / American Helicopter Society International Conference on Rotorcraft Basic Research, February, (1985).

J. Ahmad, and E. Duque, Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids, Journal of Aircraft, Vol. 33, No. 1, (1996), 54-60.

J. Sidès, K. Pahlke, and M. Costes, Numerical Simulation of Flows Around Helicopters at DLR and ONERA, Aerospace Science and Technology, Vol. 5, No. 1, (2001), 35-53.

R. E. Brown, and A. J. Line, Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation, AIAA Journal, Vol. 43, No. 7, (2005), 1434-1443.

A. J. Chorin, Computational Fluid Mechanics, first ed. (Academic Press, 1989).

D. B. Bliss, M. E. Teske, T. R. Quackenbush, A New Methodology for Free Wake Analysis Using Curved Vortex Elements, NASA CR-3958, (1987).

W. A. Johnson, Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, NASA TM-81182, (1980).

T. R. Quackenbush, D. A. Wachspress, and A. H. Boschitsch, Rotor Aerodynamic Loads Computation Using a Constant Vorticity Contour Free Wake Model, Journal of Aircraft, Vol. 32, No. 5, (1995), 911-920.

M. J. Bhagwat, and G. J. Leishman, Rotor Aerodynamics During Maneuvering Flight Using a Time-Accurate Free-Vortex Wake, Journal of American Helicopter Society, Vol. 48, No. 3, (2003), 143-158.

Q. J. Zhao, G. H. Xu, and J. G. Zhao, New Hybrid Method for Predicting the Flowfields of Helicopter Rotors, Journal of Aircraft, Vol. 43, No.2, (2006), 372-380.

A. I. Spyropoulos, A. P. Fragias, D. G. Papanikas, and D. P. Margaris, Influence of Arbitrary Vortical Wake Evolution on Flowfield and Noise Generation of Helicopter Rotors, 22nd Congress of International Council of the Aeronautical Sciences, Harrogate U K, Paper ICAS 0394, pp 394.1-394.15, (2000).

C. K. Zioutis, A. I. Spyropoulos, D. P. Margaris and D. G. Papanikas, Numerical Investigation of BVI Modeling Effects on Helicopter Rotor Free Wake Simulations, 24th Congress of International Council of the Aeronautical Sciences, 29th August - 3rd September, Yokohama, Japan (2004).

G. J. Leisman, A. Baker and A. Coyne, Measurements of Rotor Tip Vortices Using Three-Component Laser Doppler Velocimetry, Journal of American Helicopter Society. Vol. 41, No. 4, (1996).

G. H. Vatistas, V. Kozel and W. C. Mih, A Simpler Model for Concentrated Vortices, Experiments in Fluids, Vol. 11, (1991), 73-76.

W. R. Splettstoesser, G. Niesl, F. Cenedese, F. Nitti and D. G. Papanikas, Experimental Results of the European HELINOISE Aeroacoustic Rotor Test, Journal of American Helicopter Society, Vol. 40, No. 2, (1995).

S. Krishnamoorthy, and J. S. Marshall, Three-Dimensional Blade-Vortex Interaction in the Strong Vortex Regime, Physics of Fluids, Vol. 10, No. 11, (1998), 2828-2845.

G. J. Leishman, Principles of Helicopter Aerodynamics, first ed, (Cambridge University Press, 2001).

W. Johnson, Calculation of Blade-Vortex Interaction Airloads on Helicopter Rotors, Journal of Aircraft, Vol. 26, No. 5, (1988), 470-475.

D. G. Papanikas, A. J. Spyropoulos, D. K. Fertis, D. P. Margaris, Helicopter Rotor Downwash Calculation Using the Vortex Element Method for the Wake Modeling, 20th International Conference in Aeronautics. Sorento Italy, Vol. 2, ICAS-96-1.2.1, pp. 278-289,(1996).

J. M. Bhagwat G. J. Leishman G.J., Correlation of Helicopter Rotor Tip Vortex Measurements, AIAA Journal Vol. 38, No. 2, (2000).

S. E. Windnall and T. L. Wolf, Effect of Tip Vortex Structure on Helicopter Noise due to Blade Vortex Interactions, AIAA Journal of Aircraft, Vol. 17, No. 10, (1980), 705-711.

W. Kaufmann, Uber die Ausbreitung kreiszlindrischer Wirbel in zahen Flussigkeiten. Inf. Arch. Vol.31, No. 1, (1962).

M. P. Scully, Computation of Helicopter Rotor Wake Geometry and its Influence on Rotor Harmonic Airloads, ASRL TR 178-1, (1975).

H. Lamb, Hydrodynamics, sixth ed. (Cambridge University Press, 1932).

W. Johnson, A Lifting Surface Solution for Vortex Induced Airloads, Journal of Aircraft, Vol. 9, No. 4, (1971), 689-695.

W. Johnson, Assessment of Aerodynamic and Dynamic Models in a Comprehensive Analysis for Rotorcraft, Computers and Mathematics with Applications, Vol. 12A, (1986), 11-28.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize