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Abstract – The modeling issues in dynamical systems in many processes, networked control 

systems (NCS) are very complex. The models may contain subsystems with different parameters, 

which arise when using a network in an NCS such as time delay, limited bandwidth, and so on. 

Controlling these types of multiple time delay system is challenging, due to mathematical 

complexity. This paper considers the design of a stabilizing state-feedback controller for a 

networked control system with random communication delays. Sensor-to-controller (S-C) and 

controller-to-actuator delays are modeled by two independent Markov chains. Network-induced 

random delays are modeled as a Markov chain, and the resulting closed-loop system is 

transformed into a Markovian jump linear system (MJLS). The focus is on the design of a 

controller that fully incorporates the effect of the C-A delay. The resulting closed-loop system is 

described by a new discrete-time Markovian jump linear system with Markov delays model. Then, 

by applying a type of stochastic Lyapunov functional, sufficient conditions on the stochastic 

stabilizability and the existence of controller are derived in terms of coupled linear matrix 

inequalities (LMIs). The efficacy of the proposed method is shown through illustrative examples. 

Simulation results demonstrate the applicability and the effectiveness of the obtained theoretical 

results. Copyright © 2019 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
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Nomenclature 

T Matrix transposition 

 n-Dimensional Euclidean space 

 Mathematical expectation 

 Matrices 
 Matrices 

 Transition probability matrices 

 Markov chains time sets 

 Time delay sensor to controller 

 Time delay controller to actuator 

 Identity matrix and zero matrix 

 Control signal 

 Minimal Eigenvalues 

 Control signal 

* Ellipsis for terms induced by symmetry 

 Diagonal matrix 

I. Introduction 

In Networked Control Systems (NCS’s), sensors, 

actuators and controllers are spatially distributed over 

wide areas with data exchanges occurring through a 

shared band-limited digital transmission channel 

according to standardized communication protocols such 

 
as the User Datagram Protocol (UDP) and the Transfer 

Control Protocol (TCP). Compared with the traditional 

centralized point-to-point control systems, the use of 

networking technologies for remote data transfers among 

spatially distributed devices of a control application 

provides several attractive benefits such as functional 

modularity, flexibility in system design architectures, 

reduced wiring complexity, lower cabling costs, 

improved reliability, and ease in installation and 

maintenance [1]-[5]. As a result of these important 

advantages, NCSs have become ubiquitous with 

applications ranging from smart automobiles to factory 

automation, industrial process control and large electric 

power networks. However, despite their many attractive 

features, the use of NCSs has introduced new challenges 

and constraints of significant interest to the control 

research community. Indeed, the insertion of an 

‘imperfect’ communication channel between the plant 

and controller can strongly degrade the performance of 

an otherwise well-behaving control system, and induces 

undesirable stability problems. The causes of poor 

performance in NCSs are not only inherent to the 

physical nature of the network, but also to the conditions 

of its operation. Specifically, the most challenging issues 

in NCSs research are network-induced time delays, 
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information loss and packet disorder [6]-[9]. While data 

packet losses and disorder phenomenon occur because of 

network traffic congestion and ‘failures’ in the delivery 

of data packets from source to destination through the 

network, the causes of  network-induced delays, in both 

sensor-to-controller (S-C or forward) and controller-to-

actuator (C-A or backward) links, include the processing 

time required to encapsulate measurement or control data 

into packets, the queuing time for network availability, in 

addition to the propagation time taken by a data packet to 

travel from source to destination through the network’s 

physical media [1], [2]. The effect of network-induced 

delays on NCSs has attracted considerable attention, and 

many approaches have been developed in order to deal 

with the problem. Depending on the type of network and 

on the used communication protocols, existing results 

can be categorized into three main pairs [7]: 1) constant 

versus time-varying delay; 2) deterministic versus 

stochastic delays; and 3) delay smaller than one sampling 

interval and otherwise. For stochastically varying delays 

with the realistic assumption of some correlation between 

the current delay and the previous ones, the variation 

may be associated with some statistical descriptions and 

can be effectively modeled using the Markov chains.  

This allows the stability analysis and the controller 

design of such NCSs to be cast within the framework of 

Discrete-time Markovian jump linear systems (DMJLS) 

with delay [10]-[15], [33], [34]. The problem of NCSs 

under random communication delay constraints have 

been extensively investigated over the last two decades. 

In Krtolica et al. [16], time-varying delays have been 

modeled by Markov chains and, complete conditions for 

zero-state mean-square exponential closed-loop stability 

are established for linear discrete-time systems using a 

stochastic Lyapunov function approach. In Nilsson et al. 

[17], an optimal stochastic state-feedback control 

structure has been proposed where the control and 

measurement signals are supplemented time-stamped. 

The control law has been derived using the same 

technique as for the standard linear quadratic gaussian 

(LQG) problem.  

Another setup with time-stamped data in the network 

communication has been studied in Xiao et al. [18] where 

the mode-dependent state feedback control problem has 

been converted into an output feedback control problem 

and solved within the framework of Markovian jump 

linear systems (MJLS) as a convex optimization over a 

set of LMI's. In [19], H. Lin et al. have considered both 

time-delay and packet dropout issues of NCSs in the 

framework of discrete-time switched systems. Sufficient 

conditions for stability under state feedback control law 

and  disturbance attenuation have been studied. 

Further interesting results on stabilization of discrete-

time NCSs with random delays have been obtained by L. 

Zhang et al. [20] and Y. Shi et al. [21]. In [20], a two-

mode state feedback controller whose gain depends on 

both current sensor-to-controller delay ( ) and previous 

controller-to-actuator delay ( ) has been calculated 

using an iterative linear matrix inequality (LMI) 

approach. In [21], multi-step Markovian delay mode 

jumps have been involved in the design of a stabilizing 

two-mode dynamic output feedback controller by solving 

a set of LMIs. In the work of J. Wu et al. [22], a NCS 

model for random packet dropouts has been proposed 

where both controller and the actuator have been fed 

through buffers with last-in-first-out (LIFO) rule. In this 

setup, consecutive packet losses have been treated as 

random varying delays and, a mode-dependent state 

feedback controller is calculated by solving linear matrix 

inequalities. In more recent studies, several advanced 

control schemes and setups for discrete-time NCSs with 

random delays have been proposed in order to ensure 

better performance and stability. In Q. Li et al. [23], the 

mixed  control problem has been investigated and 

sufficient conditions have been established regarding the 

existence of a two-mode state feedback  controller 

with guaranteed closed-loop stochastic stability. In [24], 

L. Qui et al. have presented a unified model to cast 

random delay and packet dropouts simultaneously. In 

[25], M.S. Mahmoud et al. have extended the work in 

[23] to focus on discrete-time networked control systems 

with plant uncertainty and random Markovian delays 

with partially known transition probabilities. The 

methods developed in [20], [21] have been improved in 

[27] by considering uncertainties in the transition 

matrices due to time-variations or incomplete statistic 

information. Other results involving NCSs with random 

delays can be found in [28]-[31]. So far, the design of 

mode-dependent state feedback controllers to stabilize 

NCSs with delays in both sensor-to-controller (  ) and 

controller-to-actuator ( ) links has been carried out 

with the assumption that the total delay imposed on the 

state signal through the control loop (sensor-controller-

actuator) is . However, this is only an 

approximation that does not account for the effect of  

on  at the controller-actuator link. Indeed, if at a given 

sample time  the state information  is time-shifted 

by   to be available to the controller as 

 due to the S-C link latency, the same is true 

when this delayed state travels through the C-A link 

where the time is again shifted by  so 

that the state reaches the actuator as  

instead of  assumed in the available 

literature. To the best of the authors’ knowledge, this 

approximation has only been mentioned and justified in 

[24] but the design of a mode-dependent state feedback 

controller for non-approximated problem accounting for 

the effect of the C-A delay has not been investigated, 

which motivates the focus of this paper. In this work, the 

design of a stabilizing state-feedback controller for a 

networked control system with C-A and C-S Markovian 

delays within a DMJLS framework has been considered. 

It is assumed that at each sampling instant  , the current 

S-C delay  and the previous C-A delay  are 

available to the controller and actuator nodes, 

respectively, by the time-stamping technique. However, 

the C-A delay  travels through the S-C link to reach 
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the controller as . Consequently, the two-mode 

controller gain can be designed to depend on  and 

. More importantly, the full effect of the C-A 

delay  on the state signal is incorporated in the closed-

loop model in order to reduce further the 

conservativeness of the stabilization conditions of the 

NCS. In addition, unlike most of the aforementioned 

references, the proposed design in this paper avoids the 

use of the state variable augmentation approach, which 

leads to a significant reduction in computational 

complexity of the scheme. 

This paper is organized as follows. In Section II, the 

control problem formulation of the NCS including the 

Markovian delay description is presented. Section III 

establishes the mode-dependent stability conditions with 

the state-feedback controller. Simulation examples are 

given in order to illustrate the proposed design in Section 

IV. Conclusions are summarized in Section V. 

II. Control Problem Formulation 

The networked control system illustrated in Fig. 1 is 

considered, where the plant is a discrete linear time-

invariant system described by the following state-space 

equation: 
 

 (1) 
 

where  is the plant state vector,  is 

the plant control input.  and are known real-valued 

constant system matrices with appropriate dimensions.  

The plant, sensor, actuator and controller are spatially 

distributed with data exchanges occurring through a 

communication network. Random time delays exist in 

the S-C and C-A links and, are denoted by  and , 

respectively. The delays are bounded scalars, i.e. 

 , . A 

reasonable way to model the delays  and  is to use 

finite state homogeneous Markov chains to take into 

account the correlations between the current delays and 

the previous delays [12], [13], [19], [21], [22], [24], [28].  

In this paper,  and  are modeled as two 

independent Markov chains that take values in the finite 

sets  and . 
 

 
 

Fig. 1. Structure of Networked control system 

 

Their transition probability matrices are  

and , respectively. The transition probabilities 

of  and  jumping from mode  to  and from 

mode  to , respectively, are defined by: 
 

 (2) 

 

where  and , and: 
 

 (3) 

 

for all  and . At the actuator node 

where the control signal is supplemented time-stamped, 

an embedded processor calculates the delay information 

 at every sample time , before its transmission to 

the controller. At the controller node, while the delay  

is obtained by the time stamping technique, the 

information  is not immediately accessible due to the 

network induced delay at the S-C link. Consequently, the 

information available to the controller, at every sample 

time , is the current S-C delay  an the old C-A delay 

. Therefore, the state feedback control action 

 can be computed by the remote controller based on 

the delayed state  and the latest delay 

information available at time , namely,  and  

: 

 

 (4) 

 

where  is the two-mode delay-

dependent state feedback controller gain. When the 

control signal  is transmitted from the controller, it 

is further delayed by  before it reaches the actuator as: 
 

 (5) 
 

with: 
 

 (6) 

 

Using (5) and (6), Equation (1) can be rewritten in 

delayed closed loop system as: 
 

 (7) 

 

with initial condition: 
 

. 

 

Remark 1: Equation (6) is obtained from (4) by 

carrying out a time shift of , thus replacing time  by 

 in the control signal . However, because 

the modes of the gain  are computed 
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and fixed at the controller node, they are not affected by 

the induced C-A link delay . 

Remark 2: Although  and  are random delays 

driven by discrete-time Markov chains, the closed-loop 

system (6) is not a standard two-mode delayed 

Markovian  jump linear system (MJLS), because the state 

feedback controller gain depends on the modes  and 

 which are related, simultaneously, both to  

and . 

Remark 3: For  and , the closed-

loop system (7) is said to be in mode  and the 

controller gain  is denoted by . 

The objective is to design a state feedback controller 

such that the closed-loop system (7) is stochastically 

stable. In this setup, the full effect of the C-A delay  

on the state signal is incorporated in the closed-loop 

model in order to reduce further the conservativeness of 

the stabilization conditions of the NCS. In addition, 

unlike most of the available references, the proposed 

state feedback design in this paper avoids the use of the 

state variable augmentation approach which leads to 

significant reduction in computational complexity of the 

scheme. For the underlying system, the following 

definition is adopted for stochastic stability [23]. 

Definition 1: The closed-loop system in (7) is said to 

be stochastically stable if for every initial condition 

 defined on 

 and initial delay modes , , 

. A constant  exists, such that: 

 

 (8) 

 

where: 
 

 

 

is a nonnegative function of the system initial values 

satisfying . 

III. Main Results 

In this section, sufficient conditions for the stochastic 

stability of the closed loop system (7) are established and 

a two-mode-dependent state feedback stabilizing 

controller is designed by applying a stochastic Lyapunov 

functional and linear matrix inequality approach. As the 

controller gain depends on mode delay  , the 

multi-step jump of Markov chains is involved in system 

(7). Therefore, the transition probability matrix for the 

multi-step delay mode jump is applicable in designing 

the state feedback controller. For this purpose, the 

following proposition is given. 

Proposition 1 [21]: If the transition probability matrix 

from  to  is , then the transition 

probability matrix from to  is , which 

is still a transition probability matrix of the Markov 

chain. Especially when  , the transition 

probability matrix is , where: 
 

 
(9) 

 

The sufficient conditions to guarantee stochastic 

stability of system (7) according to definition 1 are 

shown in the following theorem. 

Theorem 1: For the closed-loop system (7) with 

random but bounded network induced delays  

and , if for each mode  

and , there exist matrices 

, , , , , , 

 and , satisfying the 

following matrix inequality: 
 

 (10) 

 

where:  
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with: 

 

 

and: 

 

 

 

 

 

 

 

 

 

 

 

 

 

, , 

 

 

Then, the closed-loop system (7) driven by controller 

(4) is stochastically stable.  

Proof: For the closed-loop system (7), the following 

stochastic Lyapunov functional candidate is constructed: 

 

 

 

where: 

 

 

 

 

 

 

 

 

 

 

where  and , , ,  

and  satisfying (10). In order to simplify the equations, 

the subscripts in the parentheses 

, will be omitted and 

replaced by dot (∙), in  … . The following is 

denoted: 
 

 (11) 

 

Define , , , 

, ,  and    

Then, the evaluation of the terms , , 

involves the following probability transition matrices: 

, : 

, : , 

 and : .  

These transition matrices involve multi-step jump of 

Markov chains modeling the induced delays. Then, the 

terms in (11) are evaluated as: 
 

 (12) 

 

 

 

 

 

This yields to:  
 

 (13) 
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 (14) 

 

 (15) 

 

 (16) 

    

Let: 

 

. 

 

Then, it is: 

 

 

 

It can be noted that the last three terms introduced in 

the right hand side of the inequality are identically nil 

with: 

 

, 

 

 

 

and: 

 

. 

  

After some matrix manipulations, the following 

equation is obtained: 
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 (17) 

 

Since both   and   , it is concluded that 

the last three terms in (17) are non-positive and this leads 

to (18). 

By applying Schur complement, equation (10) is 

equivalent to  and guarantees .  

Then, it is: 

 

 

 

 

 (18) 

 

 (19) 

 

where  denotes the minimal eigenvalue 

of –  and 

. By iterating the inequality relationship in (19), it 

follows that for any : 

 

 

 

With  , this inequality yields: 

 

 

 

 



 

S. Metallaoui, Z. Ahmida, L. Boukelkoul 

Copyright © 2019 The Authors. Published by Praise Worthy Prize S.r.l.  International Review of Automatic Control, Vol. 12, N. 4 

170 

 

 

Implying for : 

 

 

 

This implies stochastic stability of the closed-loop 

system (7) and thus completes the proof of Theorem 1.  

Theorem 1 gives sufficient LMI conditions for the 

closed-loop system (7) to be stochastically stable under 

state feedback controller (4).  

However, these conditions are nonlinear in the 

controller gain matrices , 

and . In order to 

design the state feedback stabilizing controller, 

equivalent LMI conditions with some matrix inverse 

constraints are derived and given in the following 

theorem. 

Theorem 2: For the closed-loop networked control 

system (7) with random but bounded network induced 

delays  and , there exists a controller 

(4) such that the system is stochastically stable, if for 

each mode  and 

, there exist matrices , 

,  ,  , , 

, , ,   and  , such 

that: 

 

 (20) 

 

 (21) 

 

where: 

 

 

 

 

 

 

 

 

 

with: 

 

 

and: 

 

 

 

for  and ,    . 

Moreover, if (20) and (21) have solutions, the mode-

dependent controller gain is given by . 

Proof: By Schur complement, (10) is equivalent to: 

 

 (22) 

  

 

 

 

 

with: 

 

. 

 

By expressing the matrix  introduced in 

theorem (1) in a compact form as follows: 

 

 (23) 

   

where  

and,  . Then, the matrix 

 can be written: 

 

 
(24) 

 

Using (24) with the constraints (21) and by Schur 

complement, equation (22) is equivalent to (20). This 

completes the proof. The conditions stated in Theorem 2 

are in fact a set of LMIs with some matrix inversion 

constraints. Though they are non convex, there exist 

methods to solve them such as the cone complementary 

linearization (CCL) algorithm which has been 

demonstrated to be efficient in numerical 

implementation. Hence, in this paper, it is suggested to 
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use CCL algorithm in order to calculate the controller 

gains from Theorem 2. 

IV. Simulation Results 

In this section, an example is presented in order to 

illustrate the effectiveness of the proposed state feedback 

controller. Consider a cart-pendulum system actuated by 

a permanent magnet DC motor coupled to an output gear 

[32] shown in Fig. 2. The combination of the DC motor 

dynamics with the cart-pendulum subsystem results in a 

four-state single input state space model. The state vector 

is defined as  where  is 

the position of the cart on the track and  is the angle 

that pendulum makes with the upright equilibrium. The 

input to the system is the voltage applied to the DC 

motor. The cart track surface is assumed frictionless and 

the system parameters are summarized in Table I [32].  

The state feedback controller is designed for the 

following linearized discrete-time model obtained with a 

sampling time :  

 

, 

 

 

 

The eigenvalues of  are 1.0000, 1.1228, 0.6720 and 

0.9026. Hence, the discretized system is unstable. The 

random delays in the S-C and C-A links of the NCS   

vary as and,  respectively. The 

transition probability matrices are given by: 
 

,    

 

 
 

Fig. 2. Cart and inverted pendulum system 

TABLE I 

INVERTED PENDULUM SYSTEM PARAMETERS 

Parameter Description Unit Value 

 Mass of cart kg 0.5 

 Mass of pendulum kg 0.2 

 
Distance to pendulum 

center of gravity 
m 0.5 

 Gravitational acceleration ms-2 9.81 

 
Motor armature 

resistance 
Ω 2.6 

 Back EMF constant V(rad s-1) 0.0076 

 
Gear ratio (driven gear/ 

driving gear) 
 3.7 

 Radius of output gear m 0.0063 

 

Based on Theorem 2 and using the CCL algorithm, the 

two-mode state feedback controller gains are: 
 

, 

, 

, 

, 

, 

. 
 

The state trajectories of the discrete-time model and 

the state feedback controller are obtained for initial state 

values: 

 

 
 

Initial delays are set to .  

Figures 3 and 4 show the jumps of the S-C   and C-

A  delays during the first five seconds of the 

simulation run according to their respective transition 

probabilities. The responses of the cart-pendulum 

actuated by a DC motor under the proposed two-mode 

dependent state feedback controller are illustrated by 

Figures 5 and 6. As shown in Figures 5 and 6, the 

position and  the velocity stabilize in less than 5 seconds.  

The startup oscillations in velocity are due to load 

inertia and transient phenomena of the DC motor. It can 

be seen that the closed loop  system is stochastically 

stable. The transition time of the pendulum angular 

position is shown to be lower than the time taken by the 

cart position. The generated control signal applied to the 

DC motor is shown in Fig. 7. The peak value of the 

transition DC input is reached during the starting time.  
 

 
 

Fig. 3. S-C Markovian delay  
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Fig. 4. C-A Markovian delay  

 

 
 

Fig. 5. Responses of cart position , and velocity  

 

 
 

Fig. 6. Responses of pendulum angular position   

and angular velocity  

 

 
 

Fig. 7. Stabilizing control signal at DC motor input 

V. Conclusion 

The stability problem for a class of networked control 

systems (NCSs) with the plant is considered as a 

Markovian jump system. The random delays from the 

sensor to the controller and from the controller to the 

actuator are modeled as two Markov chains. In this 

paper, a two-mode state feedback controller has been 

proposed for networked control systems with S-C and C-

A random communication delays within the general 

framework of discrete-time Markovian jump linear 

systems. By applying a type of stochastic Lyapunov 

functional, sufficient conditions on the stochastic 

stabilizability are derived in terms of coupled LMIs.   

These conditions incorporate the full effect of the C-A 

delay on the closed loop system into the controller 

design. In order to reduce the conservativeness of the 

stabilization conditions of the NCS, the full effect of the 

C-A delay on the state signal is incorporated in the 

closed-loop model. Numerical Simulations are presented 

in order to demonstrate the effectiveness of the 

controller. A stabilizing control signal at DC motor input 

is achieved under minimum surge voltage in a short 

transition period. It should be pointed out that the results 

obtained are encouraging, and it is worth mentioning that 

the proposed scheme can be extended in order to 

consider observer-based networked control systems with 

random delays. 
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