Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Stabilization of a Mini Quadrotor Helicopter

N. Azouz(1*), S. Bennaceur(2)

(1) IBISC Laboratory, France
(2) IBISC laboratory, France
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This paper presents, in the first part, the design and fabrication of a mini quadrotor helicopter for outdoor applications. The proposed autonomous flying object called XSF has some particularities such as oriented rotors, a large autonomy and a stable maneuverable aerial platform. The dynamic model proposed takes into account the gyroscopic and aerodynamic effects. In the second part, we present a stabilization strategy around a position of equilibrium. The model is highly nonlinear, we use a methodology based on the linearization and the backstepping control. The dynamic of the system involves six control inputs which will be computed to stabilize the engine with regard to external perturbations.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Micro UAV; Design; Modeling; Simulation; Stabilization

Full Text:

PDF


References


Borenstein, J. (2002). Hoverbot Project, unpublished paper.
http://www.valentiniweb.com/piermo/robotica/doc/Borenstein/paper99.pdf

Kroo I. and Printz, F. Mesicopter Project, Stanford University,: http://aero.Stanford.edu/ Mesicopter
http://dx.doi.org/10.1007/springerreference_67120

Marti S. (2000). The zero G eye: Towards a free hovering camera. Technical Report, MIT, Massachusetts, USA.
http://dx.doi.org/10.2172/4260542

Sacco, N. “How the Dragan Flyer Flies”. www.rctoys.com
http://dx.doi.org/10.1089/glre.2016.201011

Altug E., Ostrowski J., Mahony R., (2002). Control of a quadrotor helicopter using visual feedback. Proceedings of the IEEE Int. Conference on Robotics and Automation, ICRA ‘02, Washington DC, USA
http://dx.doi.org/10.1109/robot.2002.1013341

Altug, E. (2003). Vision based control of unmanned aerial vehicles with applications to an autonomous four rotor helicopter, quadrotor. Ph.D. dissertation, faculties of the university of Pennsylvania.
http://dx.doi.org/10.1007/978-94-007-1110-5_2

Bouabdallah, S., Murrieri P., and Siegwart R. (2004). Design and control of an indoor micro quadrotor, ICRA, New Orleans, USA.
http://dx.doi.org/10.1109/robot.2004.1302409

Castillo P., Dzul A., Lozano R. (2004). Real-time stabilization and tracking of a four rotor Mini-Rotorcraft. IEEE Transactions on Control Systems Technology, Regular paper, Vol.12, Issue 4, pp. 510-516.
http://dx.doi.org/10.1109/tcst.2004.825052

Guenard N., Hamel T., Eck L. (2006). Control law for the teleoperation for an UAV known as an X4-flyer, IROS. CHINA.
http://dx.doi.org/10.1109/iros.2006.282432

Hamel, T., Mahony R., Lozano R. and , Ostrowski J.P. (2002). Dynamic modelling and configuration stabilization for an X4-Flyer, in IFAC 15th Wold Congress Automatic Control.
http://dx.doi.org/10.3182/20020721-6-es-1901.00848

Romero H., Benosman R, and Lozano R. (2006). Stabilization and location of a four rotor helicopter applying vision, ACC, 3930-3936, Minneapolis, USA.
http://dx.doi.org/10.1109/acc.2006.1657332

Beji L., Abichou A., Azouz N. (2006), Modelling, Motion Planning and Control of the Drones with Revolving Airfoils: an Outline of the XSF. Robot Motion and Control Recent Developments Series: Lecture Notes in Control and Information Sciences , Vol. 335 Kozlowski, Krzysztof (Ed.), ISBN: 1-84628-404-X..
http://dx.doi.org/10.1007/978-1-84628-405-2_11

Beji, L., Abichou, A. and Zemalache, K.M., (2005). Smooth Control of an X-4 Bidirectional rotors flying robots , 5th International Workshop, on Robot Motion and Control, Dymaczewo, Poland.
http://dx.doi.org/10.1109/romoco.2005.201421

Bennaceur S., Azouz N., Abichou A. (2006). An Efficient Modeling of Flexible Blimps: Eulerian Approach. Proceedings of the AIAA Guidance, Navigation, and Control Conference. AIAA-2006-6621. Keystone, CO, USA.
http://dx.doi.org/10.1115/detc2007-35097

Prouty, R. W. (1995). Helicopter Performance, Stability and Control. Krieger Publishing Company. USA.
http://dx.doi.org/10.1002/9781119994114.ch8

Barnes, W. McCormick, Jr. (1999).Aerodynamics of V/STOL Fligh. Darcorp, USA.
http://dx.doi.org/10.1017/s0001924000054683

PADFIELD, G. D. (1996). Helicopter Flight Dynamics. Blackwell Science.
http://dx.doi.org/10.1002/9780470691847

Degrez , D. (2001).Performance et Stabilité des Avions, Universite libre de Bruxelles.
http://dx.doi.org/10.2307/306011

Lewis, A. D. and R. M. Murray, (1997). Configuration controllability of simple mechanical control system. SIAM Journal on Control and Optimization, Vol. 35, N 3.
http://dx.doi.org/10.1137/s0363012995287155

Khalil, H.K. (1992). Non linear systems, Michigan State University.
http://dx.doi.org/10.5038/1936-4660.9.2.6

Andrea-Novel, B. and Cohen de Lara, M. (1994). Commandes Linéaires des Systèmes Dynamiques. Masson.Paris.
http://dx.doi.org/10.3406/ecoru.1994.4930

Sontag, E.D. (1998). Mathematical Control Theory, Deterministic Finite Dimensional Systems, Second Edition, Springer-Verlag.
http://dx.doi.org/10.1109/tac.2001.917718

Coron, J-M (1999), On the stabilization of some non linear control system. Kluwer Academic Publishers, Holland, 307-367, NATO advanced Study Institute, Nonlinear analysis, differential equations, and control, eds F.H. Clarke.
http://dx.doi.org/10.1007/978-94-011-4560-2_5


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize