Open Access Open Access  Restricted Access Subscription or Fee Access

A Method for Concrete Building Components’ Hygrothermal Analysis - The Computational Tool ΥΜΘΥΣ

Christina Giarma(1*)

(1) Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki (A.U.Th.), Greece
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this paper a method for the calculation of simultaneous heat and vapor transfer inside single-layered concrete building components is presented. Specifically, the physical background of this method is outlined and its mathematical core is presented. Furthermore, the computational tool ΥΜΘΥΣ, which is the software implementation of the proposed method, is analytically presented (input/ output data). Finally, the accuracy of the proposed method’s results is verified through their comparison with the results of a widely accepted hygrothermal analysis tool.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Heat Transfer; Moisture Transfer; Concrete Components; Hygrothermal Calculations

Full Text:

PDF


References


G. Fagerlund, Moisture mechanics as a tool for service life prediction, International Conference Durability of Building Materials and Components, Vol. 1, pp. 21–32, Stockholm, Sweden, May 1996.

C. G. Bornehag, G. Blomquist, F. Gyntelberg, B. Järvholm, P. Malmberg, L. Nordvall, A. Nielsen, G. Pershagen, J. Sundell, Dampness in Buildings and Health-Nordic Interdisciplinary Review of the Scientific Evidence on Associations between Exposure to “Dampness” in Buildings and Health Effects (NORDDAMP), Indoor Air, Vol. 11 (Issue 2): 72-86, June 2001.

C. G. Bornehag, J. Sundell, S. Bonini, A. Custovic, P. Malmberg, S. Skerfving, T. Sigsgaar, A. Verhoeff, Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998-2000) on dampness and mite exposure in buildings and health effects, Indoor Air, Vol. 14 (Issue 4): 243-257, August 2004.

J-H Park, P. L. Schleiff, M. D. Attfield, J. M. Cox-Ganser, K. Kreiss, Building- related respiratory symptoms can be predicted with semi- quantitative indices of exposure to dampness and mould, Indoor Air, Vol. 14 (Issue 6): 425-433, November 2004.

C. Giarma, Numerical approach of the simultaneous moisture and heat transfer in concrete building components under the influence of environmental conditions and estimation of the carbonation depth, Ph.D. dissertation (in Greek), Dept. Civil Eng., Aristotle Univ. of Thessaloniki, 2010.

WUFI Pro-4: PC Program for analyzing the 1-dimensional heat and moisture transport in building components (D. Zirkelbach, Th. Schmidt, M. Kehrer, H.M. Künzel, WUFIÒ Pro Manual), Fraunhofer – Institute für Bauphysik, Stuttgart.

Burch D. M., Chi J., MOIST. A PC program for Predicting Heat and Moisture Transfer in Building Envelopes, Release 3.0. NIST (United States Department of Commerce, Technology Administration, National Institute of Standards and Technology), Special Publication 917, 1997.

W. Maref, M. A. Lacasse, D. Booth, An approach to validating computational models for hygrothermal analysis – full scale experiments, NRCC – 45215. (A version of this document is published in the Proceedings of the 3rd International Conference on Computational Heat and Mass Transfer, pp. 243-251, Banff, Alberta, May 2003)

MATCH-Moisture and temperature calculation for constructions of hygroscopic materials. «http://www.match-box.dk»

UMIDUS http://www.eere.energy.gov/buildings/tools_directory/software/umidus.htm

C. E. Hagentoft., T. Blomberg, 1-D HAM-Coupled Heat, Air and Moisture Transport in Multi- layered Wall Structures. (Manual with brief theory and an example.) Version 2.0, 2000.

DELPHIN http://www.bauklimatik-dresden.de/delphin

H. M. Künzel, Verfahren zur ein und zweidimensionalen Berechnung des gekoppelten Wärme und Feuchtetransports in Bauteilen mit einfachen Kennwerten, Ph.D. dissertation, Fakultät Bauingenieur- und Vermessungswesen, Universität Stuttgart, 1994.

A. H. Holm. Ermittlung der Genauigkeit von instationären hygrothermischen Bauteilberechnungen mittels eines stochastischen Konzeptes, Ph.D. dissertation, Fakultät Bauingenieur- und Vermessungswesen, Universität Stuttgart, 2001.

C. Giarma, D. Aravantinos, Estimation of building components’ exposure to moisture in greece based on wind, rainfall and other climatic data, submitted to Journal of Wind Engineering and Industrial Aerodynamics (currently under review) .

G. A. Terzidis, Hydraulics 1- Hydrodynamics, Thessaloniki 1973.

S.V. Patankar, Numerical Heat Transfer and Fluid Flow, (Minkowycz WJ and Sparrow EM Editors, Taylor & Francis. New York: Hemisphere Pub. Corp., 1980).

A. Steffens, Modellierung von Karbonatisierung und Chloridbindung zur numerischen Analyse der Korrosionsgefährdung der Betonbewehrung, Ph.D. dissertation, Institüt für Statik – Technische Universität Braunschweig, 2000.

C. Giarma, Proposal of an empirical relationship for moisture storage function of concrete, Bauphysik,Vol.32 (Issue 3): 160-166, June 2010.

K. Kiessl, Kapillarer und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen –Rechnerische Erfassung und bauphysikalische Anwendung, Ph.D. dissertation, Fachbereich Bauwesen, Universität – Gesamthochschule – Essen, 1983.

A. N. Khalifa, Natural convective heat transfer coefficient – a review II. Surfaces in two- and three- dimensional enclosures, Energy Conversion and Management, Vol. 42 (Issue 4): 505-517, March 2001.

H. Schaube, H. Werner Wärmeübergangskoeffizient unter natürlichen Klimabedigungen. IBP Mitteilung 13: 1986, Nr.109, Fraunhofer Institut Bauphysik.

S. Sharples, Full scale measurements of convective energy losses from exterior building surface, Building and Environment, Vol. 19 (Issue 1): 31-39, 1984.

D. L. Loveday, A.H. Taki, Convective heat tyransfer coefficients at a plane surface on a full scale building façade, International Journal of Heat and Mass Transfer, Vol. 39 (Issue 8): 1729-1742, May 1996.

M. G. Emmel, M. O. Abadie, N. Mendes, New external convective heat transfer coefficient correlations for isolated low-rise buildings, Energy and Buildings Vol. 39 (Issue 3): 335-342, 2007.

H. Janssen, B. Blocken, J. Carmeliet, Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation, International Journal of Heat and Mass Transfer, Vol. 50 (Issue 5-6): 1128-1140, March 2007.

Q. Li, J. Rao, P. Fazio, Development of HAM tool for building envelope analysis, Building and Environment, Vol. 44 (Issue 5): 1065-1073, May 2009.

A. Neale, D. Derome, B. Blocken, J. Carmeliet, Coupled simulation of vapor flow between air and a porous material, www.ornl.gov/sci/buildings/2010/Session%20PDFs/61_New.pdf

C. Rode Pedersen, Prediction of Moisture Transfer in Building Constructions, Building and Environment, Vol. 27 (Issue 3): 387-397, July 1992.

METEONORM Global Meteorological Database for Solar Energy and Applied Climatology.Swiss Federal Institute of Technology, Zurich, Switzerland.

User's Guide: hygIRC 1-D Version 1.0


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize