Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Research of Piezoelectricity as Renewable Energy Power Source for Conveyor Electric Motor on Garbage Collection Vessel


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v12i1.24115

Abstract


There has been a lot of research on garbage collection vessels, but not many have utilized renewable energy. This research aims to utilize piezoelectricity as a power source for the conveyor of the garbage collection ship. When it rains, piezoelectricity will convert rainwater vibrations into electricity. This research uses an inner flat catamaran garbage collection vessel with a conveyor and a wing conveyor. The power source from piezoelectricity is planned to fulfil the power of the electric motor driving the conveyor. Piezoelectric experiments have been conducted with artificial raindrops with raindrop diameter variations of 8.5 mm, 10 mm, and 12 mm. The results have showed that the piezoelectricity required to support the electrical power of the conveyor is 520 pieces, with the average power generated is 55.69 watts per beat. In addition, the research has also produced a conceptual design of a garbage collection vessel with piezoelectricity on the ship's deck.
Copyright © 2024 Praise Worthy Prize - All rights reserved.

Keywords


Piezoelectricity; Experiments; Droplets; Rainwater; Garbage Collection Vessels

Full Text:

PDF


References


United Nations. United Nations. Goal 14 conserve and sustainably use the oceans, seas and marine resources for sustainable development (2020).
Available from:
https://www.unep.org/explore-topics/sustainabledevelopment-goals/why-do-sustainable development- goals matter/goal-14

Angie, N., Tokit, E. M., Abd Rahman, N., Saat, F. A. Z. M., Anuar, F. S., & Mitan, N. M. M. A preliminary conceptual design approach of food waste composter design, Evergreen, Vol. 08, Issue 02, pp397-407, June 2021, 1;8(2): 397-407.
https://doi.org/10.5109/4480721

Aidane. M.A. Eco ship recycling industrial park development strategy eco ship recycling industrial park development strategy. (2022) Evergreen, 9 (2) 524-530.
https://doi.org/10.5109/4794183

Purba, N. P., Handyman, D. I., Pribadi, T. D., Syakti, A. D., Pranowo, W. S., Harvey, A., & Ihsan, Y. N. Marine debris in Indonesia: A review of research and status. (2019) Marine pollution bulletin, 146, 134-144.
https://doi.org/10.1016/j.marpolbul.2019.05.057

Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., ... & Reisser, J. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. (2018) Scientific reports, 8(1), 1-15.
https://doi.org/10.1038/s41598-018-22939-w

Borrelle. S. B. Predicted plastic garbage growth outpaces plastic pollution mitigation efforts. (2020) An Advanced Association of Science, 369 1515-1518.
https://doi.org/10.1126/science.aba3656

Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. (2017) Scientific reports, 7(1), 44501.
https://doi.org/10.1038/srep44501

Sugianto, E., Chen, J. H., & Purba, N. P. Cleaning technology for marine debris: A review of current status and evaluation. (2023) International Journal of Environmental Science and Technology, 20(4), 4549-4568.
https://doi.org/10.1007/s13762-022-04373-8

Sugianto, E., & Chen, J. H. Experimental Study of the Effect of a Solid Wing Conveyor on Marine Debris Collection. (2022) Journal of Marine Science and Technology, 30(6), 2.
https://doi.org/10.51400/2709-6998.2584

Sugianto, E., Horng-Chen, J., & Purba, N. P. Numerical investigation of conveyor wing shape type effect on ocean waste collection behavior. (2021) In E3S Web of Conferences (Vol. 324, p. 01005). EDP Sciences.
https://doi.org/10.1051/e3sconf/202132401005

Sugianto, E., & Chen, J. H. Hollow Wing Technique to Enhancing Conveyor Performance on Marine Debris Collection. (2022) Evergreen. 9(4), 1160-1167.
https://doi.org/10.5109/6625727

Sugianto, E., Chen, J. H., Sugiono, R., & Prasutiyon, H. Effect of portable conveyor placement in ship on ocean waste collection behavior. (2022) In IOP Conference Series: Earth and Environmental Science (Vol. 1095, No. 1, p. 012015). IOP Publishing.
https://doi.org/10.1088/1755-1315/1095/1/012015

Oyewola, O., Ismail, O., Olasinde, M., Ajide, O., Techno-Economic Assessment and Potential Greenhouse Gas Emission Reduction of Standalone Solar PV and Hybrid Solar PV-Diesel Generator Systems in Fiji Islands, (2022) International Journal on Energy Conversion (IRECON), 10 (4), pp. 124-132.
https://doi.org/10.15866/irecon.v10i4.22262

Pardo, C., Pabon, J., Fonseca, M., Performance, Emission, and Economic Perspectives of a Diesel Engine Fueled with a Mixture of Hydroxy Gas and Biodiesel from Waste Palm Cooking Oil, (2021) International Review of Mechanical Engineering (IREME), 15 (10), pp. 520-529.
https://doi.org/10.15866/ireme.v15i10.21211

Ilyas, M. A., & Swingler, J. Piezoelectric energy harvesting from raindrop impacts. (2015) Energy, 90, 796-806.
https://doi.org/10.1016/j.energy.2015.07.114

Li, Z., Li, T., Yang, Z., & Naguib, H. E. Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications. (2019) Applied Energy, 255, 113805.
https://doi.org/10.1016/j.apenergy.2019.113805

Susanti, A., Nauzy, M. A., Widaningsih, S., Hamdiyanti, Y., & Novianingsih, K. Rainwater Pressure Electic Generator Model Using Piezoelectric. (2021) Indonesian Journal of Multidiciplinary Research, 1(1), 11-16.
https://doi.org/10.17509/ijomr.v1i1.33666

Wu, N., Bao, B., & Wang, Q. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. (2021) Engineering Structures, 235, 112068.
https://doi.org/10.1016/j.engstruct.2021.112068

Hidayanti, F., Wati, E. K., & Akbar, H. Energy harvesting system design for converting noise into electrical energy. (2020) International Journal of Advanced Science and Technology, 29(03), 4791-4802.

Mowaviq MI, Junaidi A, Purwanto DS. Electric Energy Harvesting Lane Using Piezoelektrik. (2018) Journal Of Energy & Electricity. 2018;10(2).
https://doi.org/10.33322/energi.v10i2.219

Xu Z, Shan X, Chen D, Xie T. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. (2016) Applied Sciences. 2016;6(1).
https://doi.org/10.3390/app6010010

Abdelkefi A, Najar F, Nayfeh AH, Ayed S Ben. An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. (2011) Smart Mater Struct. 20(11).
https://doi.org/10.1088/0964-1726/20/11/115007

J, Key-Buck Converter K, Thief J, Energy P. Power Generation Floor Using Piezoelectricity with Buck Converter LM2596. (2021) Journal of Indonesian Electro Current (JAEI).84-89.

Wang, J., Liu, Z., Shi, K., & Ding, G. Development and application performance of road spring-type piezoelectric transducer for energy harvesting. (2021) Smart Materials and Structures, 30(8), 085020.
https://doi.org/10.1088/1361-665X/ac0c2d

Prasetyawati, F. Y., Yusuf, M. M., Ridho, A. I., Harwanti, A., Rezeki, Y. A., Sarwanto, S., ... & Rahardjo, D. T. Literature review of plastic waste composites as piezoelectric and photovoltaic (vizo) integrated sustainable energy producing paving blocks. (2022) Journal of Physics: Physical Science and Its Applications, 7(1), 48-55.
https://doi.org/10.35508/fisa.v7i1.5478

Bell, A. J., Comyn, T. P., & Stevenson, T. J. Expanding the application space for piezoelectric materials. (2021) APL Materials, 9(1).
https://doi.org/10.1063/5.0035416

Chen, L., Liu, H., Qi, H., & Chen, J. High-electromechanical performance for high-power piezoelectric applications: Fundamental, progress, and perspective. (2022) Progress in Materials Science, 127, 100944.
https://doi.org/10.1016/j.pmatsci.2022.100944

Mokhtari, F., Azimi, B., Salehi, M., Hashemikia, S., & Danti, S. Recent advances of polymer-based piezoelectric composites for biomedical applications. (2021) Journal of the Mechanical Behavior of Biomedical Materials, 122, 104669.
https://doi.org/10.1016/j.jmbbm.2021.104669

Mahapatra, S. D., Mohapatra, P. C., Aria, A. I., Christie, G., Mishra, Y. K., Hofmann, S., & Thakur, V. K. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. (2021) Advanced Science, 8(17), 2100864.
https://doi.org/10.1002/advs.202100864

Sezer, N., & Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. (2021) Nano energy, 80, 105567.
https://doi.org/10.1016/j.nanoen.2020.105567

Alrashdan, M., Quality and Damping Factors Optimization Using Taguchi Methods in Cantilever Beam Based Piezoelectric Micro-Power Generator for Cardiac Pacemaker Applications, (2020) International Review on Modelling and Simulations (IREMOS), 13 (2), pp. 74-84.
https://doi.org/10.15866/iremos.v13i2.18347

Adeyanju, A., Energy Generation from Footsteps Using Piezo-Electric Tiles, (2021) International Journal on Energy Conversion (IRECON), 9 (4), pp. 156-167.
https://doi.org/10.15866/irecon.v9i4.19956

Yannier, S., Sabanovic, A., Continuous Time Controller Based on SMC and Disturbance Observer for Piezoelectric Actuators, (2019) International Review of Physics (IREPHY), 13 (2), pp. 37-45.

Zaidi, M., Negative Feedback Programmable Charge Amplifier for Control Piezoelectric Sensors, (2022) International Review of Electrical Engineering (IREE), 17 (2), pp. 196-205.
https://doi.org/10.15866/iree.v17i2.21740

Komijani, A., Shahi, R., Gaynarje, A., Sadatserky, S., Firoozi, B., Reducing the Gold Film Residual Stress by Using the Crystalline Piezoelectric Property in Piezoelectric/Au Thin Films, (2013) International Review of Physics (IREPHY), 7 (5), pp. 370-375.

Kaddari, M., Ennawaoui, C., El Mouden, M., Hajjaji, A., Semlali, A., Diagnosis of Shaft Misalignment Fault by Piezoelectric Materials to Improve Reliability of Induction Motors, (2019) International Journal on Engineering Applications (IREA), 7 (4), pp. 137-144.
https://doi.org/10.15866/irea.v7i4.17653

Batra, A. K., Currie, J. R., Alomari, A. A., Aggarwal, M. D., & Bowen, C. R. A versatile and fully instrumented test station for piezoelectric energy harvesters. (2018) Measurement, 114, 9-15.
https://doi.org/10.1016/j.measurement.2017.08.038


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize