Open Access Open Access  Restricted Access Subscription or Fee Access

Advanced Constrained Model Predictive Control of Vapor Pressure Deficit in Agricultural Greenhouses


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v10i5.21699

Abstract


The agricultural greenhouse is an open system to the external environment. The challenge is to track the reference trajectory of relevant climatic parameters and regulate the internal climate, despite the strong meteorological disturbances. This study focuses on the modelling and control of Vapor Pressure Deficit (VPD) coupled with temperature and hygrometry in greenhouses. The importance of this parameter is related to plant growth and its sensitivity to external climate disturbances. The VPD is a primordial parameter for preventing plant diseases caused by an inappropriate interior climate. This work provides a methodology for efficient control of VPD with a Multi-setting parameterization of the controller according to the needs of the plant and the actuators’ power available in the greenhouse. For this purpose, the VPD is indirectly evaluated through the ambient air temperature and humidity using the psychometric chart embedded in a fuzzy inference algorithm. For dynamic modelling of VPD, a discrete state-space model is obtained by considering an agricultural greenhouse as a black-box system. Numerical algorithms for Subspace State Space System Identification (N4SID) of Matlab is applied to parametric identification based on experimental measurements. A Constrained Model Predictive Control (CMPC) method is applied for VPD control design, considering physical and operational constraints on Input/output variables. Here, the CMPC strategy is improved by information on the greenhouse’s outside climatic conditions. Promising numerical simulation results show the feasibility of the proposed modelling and control strategy. They show good performances, despite the climatic exchange phenomenon between inside and outside the greenhouse and strong external weather disturbances. The inside VPD tracks nearly reference trajectories with a small overshooting as desired.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Constrained Model Predictive Control; Fuzzy Inference Algorithm; Greenhouse Climate Control N4SID Algorithm; Vapor Pressure Deficit

Full Text:

PDF


References


B. De Moor and P. Van Overschee, Numerical algorithms for subspace state space system identification, In Isidori (Ed.), Trends in Control, (London: Springer London, 1995, 385-422.)
https://doi.org/10.1007/978-1-4471-3061-1_12

R. Ramin Shamshiri et al, Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition To Plant Factories and Urban Agriculture, Int. J. Agric. Biol. Eng, vol. 11 no. 1, Jan. 2018, pp. 1-22.

R. L. Sumalan et al., A Cost-Effective Embedded Platform for Greenhouse Environment Control and Remote Monitoring, Agronomy, vol. 10 no. 7, Jun. 2020, pp. 1-36.
https://doi.org/10.3390/agronomy10070936

N. Bennis, J. Duplaix, G. Enéa, M. Haloua, and H. Youlal, Greenhouse Climate Modelling and Robust Control, Comput. Electron. Agric., vol. 61 no. 2, May 2008, pp. 96-107.
https://doi.org/10.1016/j.compag.2007.09.014

A. Moufid and N. Bennis, A multi-modelling approach and optimal control of greenhouse climate, In S. El Hani and M. Essaaidi (Ed.), Recent Advances in Electrical and Information Technologies for Sustainable Development, (Switzerland: Springer International Publishing, 2019, 201-208).
https://doi.org/10.1007/978-3-030-05276-8_22

A. Moufid, N. Boutchich, and N. Bennis, ANN approach to direct and decoupled inverse modelling of inside climate in agricultural greenhouses, 2020 International Conference on Electrical and Information Technologies (ICEIT), March 4-7, 2020, Rabat, Morocco.
https://doi.org/10.1109/ICEIT48248.2020.9113191

S. V. Gandhi and M. T. Thakker, Climate control of greenhouse system using neural predictive controller, In D. Deb, A. Dixit, L. Chandra (Ed.), Renewable Energy and Climate Change, (Singapore: Springer Singapore, 2020, 211-221).
https://doi.org/10.1007/978-981-32-9578-0_19

M. A. Márquez-Vera, J. C. Ramos-Fernández, L. F. Cerecero-Natale, F. Lafont, J.-F. Balmat, and J. I. Esparza-Villanueva, Temperature Control in a MISO Greenhouse by Inverting its Fuzzy Model, Comput. Electron. Agric., vol. 124, Jun. 2016, pp. 168-174.
https://doi.org/10.1016/j.compag.2016.04.005

Y. Su, L. Xu, and E. D. Goodman, Greenhouse Climate Fuzzy Adaptive Control Considering Energy Saving, Int. J. Control Autom. Syst., vol. 15 no. 4, Aug. 2017, pp. 1936-1948.
https://doi.org/10.1007/s12555-016-0220-6

P. J. M. van Beveren, J. Bontsema, G. van Straten, and E. J. van Henten, Optimal Control of Greenhouse Climate Using Minimal Energy and Grower Defined Bounds, Appl. Energy, vol. 159, Dec. 2015, pp. 509-519.
https://doi.org/10.1016/j.apenergy.2015.09.012

Y. Su, L. Xu, and E. D. Goodman, Control Allocation-Based Adaptive Control for Greenhouse Climate, Int. J. Syst. Sci., vol. 49 no. 6, Apr. 2018, pp. 1146-1163.
https://doi.org/10.1080/00207721.2018.1440025

S. Piñón, M. Peña, C. Schugurensky, and B. Kuchen, Constrained Predictive Control Of A Greenhouse, IFAC Proc. Vol., vol. 33 no. 19, Jul. 2000, pp. 155-160.
https://doi.org/10.1016/S1474-6670(17)40905-0

S. Mohamed and I. A. Hameed, A GA-Based Adaptive Neuro-Fuzzy Controller for Greenhouse Climate Control System, Alex. Eng. J., vol. 57 no. 2, Jun. 2018, pp. 773-779.
https://doi.org/10.1016/j.aej.2014.04.009

C. Lijun, D. Shangfeng, L. Meihui, and H. Yaofeng, Adaptive Feedback Linearization-based Predictive Control for Greenhouse Temperature, IFAC-Pap., vol. 51 no. 17, 2018, pp. 784-789.
https://doi.org/10.1016/j.ifacol.2018.08.100

G. Nicolosi, R. Volpe, and A. Messineo, An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse, Energies, vol. 10 no. 5, May 2017, pp. 1-17.
https://doi.org/10.3390/en10050722

A. Hasni, R. Taibi, B. Draoui, and T. Boulard, Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms, Energy Procedia, vol. 6, 2011, pp. 371-380.
https://doi.org/10.1016/j.egypro.2011.05.043

L. Chen, S. Du, Y. He, M. Liang, and D. Xu, Robust Model Predictive Control for Greenhouse Temperature Based on Particle Swarm Optimization, Inf. Process. Agric., vol. 5 no. 3, Sep. 2018, pp. 329-338.
https://doi.org/10.1016/j.inpa.2018.04.003

H. Hu, L. Xu, R. Wei, and B. Zhu, Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms, Sensors, vol. 11 no. 6, May 2011, pp. 5792-5807.
https://doi.org/10.3390/s110605792

P. M. Ferreira and A. E. Ruano, Discrete Model-Based Greenhouse Environmental Control using the Branch & Bound Algorithm, IFAC Proc. Vol., vol. 41 no. 2, 2008, pp. 2937-2943.
https://doi.org/10.3182/20080706-5-KR-1001.00494

D. de Freitas Bezerra, V. W. C. de Medeiros, and G. E. Gonçalves, Towards a Control-as-a-service Architecture for Smart Environments, Simul. Model. Pract. Theory, vol. 107, Feb. 2021, pp. 1-64.
https://doi.org/10.1016/j.simpat.2020.102194

U. S. Devendra R. Bodkhe, Pravin F. Rane, Yashpal Gogia, and Warsha Kandlikar, Greenhouse monitoring using iot technology, 2015 International Conference on Computing Communication Control and Automation, February 26 - 27, 2015, Pune, India.

E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, Energy Efficient Operation and Modeling for Greenhouses: A Literature Review, Renew. Sustain. Energy Rev., vol. 117, Jan. 2020, p. 109480.
https://doi.org/10.1016/j.rser.2019.109480

A. Maher, E. Kamel, F. Enrico, I. Atif, and M. Abdelkader, An Intelligent System for the Climate Control and Energy Savings in Agricultural Greenhouses, Energy Effic., vol. 9 no. 6, Dec. 2016, pp. 1241-1255.
https://doi.org/10.1007/s12053-015-9421-8

A. Selmani et al., Towards Autonomous Greenhouses Solar-Powered, Procedia Comput. Sci., vol. 148, 2019, pp. 495-501.
https://doi.org/10.1016/j.procs.2019.01.062

T. Alinejad, M. Yaghoubi, and A. Vadiee, Thermo-environomic Assessment of an Integrated Greenhouse with an Adjustable Solar Photovoltaic Blind System, Renew. Energy, vol. 156, Aug. 2020, pp. 1-13.
https://doi.org/10.1016/j.renene.2020.04.070

C. Guzmán et al., Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control, Sensors, vol. 19 no. 1, Dec. 2018, p. 60.
https://doi.org/10.3390/s19010060

A. Escamilla-García, G. M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza, and A. Gastélum-Barrios, Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development, Appl. Sci., vol. 10 no. 11, May 2020, pp. 1-43.
https://doi.org/10.3390/app10113835

R. R. Shamshiri, J. W. Jones, K. R. Thorp, D. Ahmad, H. C. Man, and S. Taheri, Review of Optimum Temperature, Humidity, and Vapour Pressure Deficit for Microclimate Evaluation and Control in Greenhouse Cultivation of Tomato: A Review, Int. Agrophysics, vol. 32 no. 2, Apr. 2018, pp. 287-302.
https://doi.org/10.1515/intag-2017-0005

N. Lu et al., Control of Vapor Pressure Deficit (VPD) in Greenhouse Enhanced Tomato Growth and Productivity During the Winter Season, Sci. Hortic., vol. 197, Dec. 2015, pp. 17-23.
https://doi.org/10.1016/j.scienta.2015.11.001

J. A. Hernandez-Salazar, D. Hernandez-Rodriguez, R. A. Hernandez-Cruz, J. C. Ramos-Fernandez, M. A. Marquez-Vera, and F. R. Trejo-Macotela, Estimation of the evapotranspiration using anfis algorithm for agricultural production in greenhouse, 2019 IEEE International Conference on Applied Science and Advanced Technology, November 27-28, 2019, Queretaro, Mexico.
https://doi.org/10.1109/iCASAT48251.2019.9069533

J. C. Ramos-Fernández, J.-F. Balmat, M. A. Márquez-Vera, F. Lafont, N. Pessel, and E. S. Espinoza-Quesada, Fuzzy Modeling Vapor Pressure Deficit to Monitoring Microclimate in Greenhouses, IFAC-Pap., vol. 49 no. 16, 2016, pp. 371-374.
https://doi.org/10.1016/j.ifacol.2016.10.068

R. Pahuja, H. K. Verma, and M. Uddin, Implementation of Greenhouse Climate Control Simulator Based on Dynamic Model and Vapor Pressure Deficit Controller, Eng. Agric. Environ. Food, vol. 8 no. 4, Oct. 2015, pp. 273-288.
https://doi.org/10.1016/j.eaef.2015.04.009

P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems (Boston MA: Springer US, 1996).
https://doi.org/10.1007/978-1-4613-0465-4

A. E. Robles and M. Giesbrecht, N4SID-VAR method for multivariable discrete linear time-variant system identification, Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, July 29-31, 2018, Porto, Portugal.
https://doi.org/10.5220/0006907505020509

J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory, computation, and design (2nd edition. Madison, Wisconsin: Nob Hill Publishing, 2017.).

Mossa, M., Zaki Diab, A., Effective Model Predictive Control Approach for a Faulty Induction Motor Drive, (2019) International Review of Electrical Engineering (IREE), 14 (5), pp. 314-327.
https://doi.org/10.15866/iree.v14i4.16837

Massaq, Z., Chbirik, G., Abounada, A., Brahmi, A., Ramzi, M., Control of Photovoltaic Water Pumping System Employing Non-Linear Predictive Control and Fuzzy Logic Control, (2020) International Review on Modelling and Simulations (IREMOS), 13 (6), pp. 373-382.
https://doi.org/10.15866/iremos.v13i6.18615

Reddipogu, J., Elumalai, V., Multi-Objective Model Predictive Control for Vehicle Active Suspension System, (2020) International Review of Automatic Control (IREACO), 13 (5), pp. 255-263.
https://doi.org/10.15866/ireaco.v13i5.19212

T. Coleman, M. A. Branch, and A. Grace, Optimization Toolbox User's Guide (The mathworks inc. 1999.).

F. Govaers, Introduction and Implementations of the Kalman Filter, (Ed. IntechOpen, 2019).
https://doi.org/10.5772/intechopen.75731

Moreno-Chuquen, R., Florez-Cediel, O., Online Dynamic Assessment of System Stability in Power Systems Using the Unscented Kalman Filter, (2019) International Review of Electrical Engineering (IREE), 14 (6), pp. 465-472.
https://doi.org/10.15866/iree.v14i6.16979

E. Dincel and M. T. Söylemez, Digital PI-PD Controller Design for Arbitrary Order Systems: Dominant Pole Placement Approach, ISA Trans., vol. 79, Aug. 2018, pp. 189-201.
https://doi.org/10.1016/j.isatra.2018.04.009

A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi, Optimizing Model Predictive Control Horizons Using Genetic Algorithm for Motion Cueing Algorithm, Expert Syst. Appl., vol. 92, Feb. 2018, pp. 73-81.
https://doi.org/10.1016/j.eswa.2017.09.004


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize