An Experimental Investigation of Overshot Waterwheel in Very Low Head Water Resources for Pico Hydro
(*) Corresponding author
DOI: https://doi.org/10.15866/irea.v10i3.21364
Abstract
Waterwheels are considered a low-cost and simple alternative method for rural electrification and this paper aims to investigate the performance of a non-complex geometrical design of overshot waterwheel in a pico hydro system. The waterwheel and the hydro system have been assessed at very low water heads condition at 1.5 m water and 5 L/s flow rate using a water test rig. According to the experimental results, the proposed waterwheel manages to achieve significant rotational speed, mechanical torque, and efficiency. The rotational speed has produced more than 130 rpm with mechanical torque reaching up to 1.2 Nm. Analytically, the turbine with four bottles per blade has an efficiency of 32 %. This is higher than the efficiency of three bottles per blade at 24 %. The results have also indicated that the overall performance of overshot water wheels with four bottles blade is higher than the three bottles per blade. Furthermore, certain specific values of water head and flow rate have been found out to be able to obtain the optimum efficiency. At the same time, the values of water head and water flow rate have been also found to be proportional with the value of the mechanical torque produced. Finally, the ability of the proposed system to produce a considerable output for power generation has showed that it is potentially viable to be used at the actual field.
Copyright © 2022 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
Farriz, M. B., H. Boejang, M. Masjuri, M. S. M. Aras, N. H. A. Razik, S. Mate, and K. Sopian. Evolution of Simple Reaction Type Turbines for Pico-Hydro Applications. Jurnal Teknologi 77, no. 32 (2015).
https://doi.org/10.11113/jt.v77.6980
Kirke, Brian. Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development 52 (2019), 1-10.
https://doi.org/10.1016/j.esd.2019.06.002
Saavedra, A., Galvis, N., Mesa, F., Banguero, E., Castaneda, M., Zapata, S., Aristizabal, A., Current State of the Worldwide Renewable Energy Generation: a Review, (2021) International Journal on Engineering Applications (IREA), 9 (3), pp. 115-127.
https://doi.org/10.15866/irea.v9i3.19987
Rais, N. A. M., and M. F. Basar. Pico-Hydro Generation System: Empirical Investigation on a Novel Z-Blade Low-Head Low-Flow Water Turbine. International Journal of Renewable Energy Research (IJRER) 11, no. 1 (2021): 108-113.
Kumara, L. H. L. T. P. (2014). Analysis of Floating Type Water Wheel for Pico Hydro Systems in Sri Lanka. Energy Technology EGI.
Şen, Z. (2013). Ancient water robotics and Abou-l Iz Al-Jazari. Water Science and Technology: Water Supply, 13(3), 699-709.
https://doi.org/10.2166/ws.2013.031
Shulman, J.-C. (2017). Water-Lifting Technology in the Graeco-Roman World and Its Development through the Renaissance. In A Tale of Three Thirsty Cities (pp. 29-97). BRILL.
https://doi.org/10.1163/9789004312425_004
Munro, J. (2002). Industrial Energy from Water-Mills in the European Economy, Fifth to Eighteenth Centuries: the Limitations of Power. Distribution, (11027), 64.
Franco, W., Ferraresi, C., & Revelli, R. (2019). Functional analysis of piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines, 7(2).
https://doi.org/10.3390/machines7020032
Fasol, K. H. (2002). A Short History of Hydropower Control. IEEE Control Systems, 22(4), 68-76.
https://doi.org/10.1109/MCS.2002.1021646
Mächtle, B., Hecht, S., Manke, N., Kromer, B., Lindauer, S., Li, C. S., … Bubenzer, O. (2019). The age and origin of Karez systems of silk road oases around Turpan, Xinjiang, P.R. of China. In Socio-Environmental Dynamics Along the Historical Silk Road (pp. 359-378). Springer International Publishing.
https://doi.org/10.1007/978-3-030-00728-7_17
Viollet, P. L. (2017, August 1). From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions. Comptes Rendus - Mecanique. Elsevier Masson SAS.
https://doi.org/10.1016/j.crme.2017.05.016
Shi, X. (2019). The hydraulic tilt hammer in ancient China. In History of Mechanism and Machine Science (Vol. 37, pp. 113-122). Springer.
https://doi.org/10.1007/978-3-030-03538-9_10
Quaranta, E., Fontan, S., Cavagnero, P., & Revelli, R. (2015). Efficiency of Traditional Water Wheels. IAHR World Congress, 3-6.
De Miranda, A. (2014). Water-harvesting tradition in Syrian steppe. In Procedia Engineering (Vol. 89, pp. 1522-1528). Elsevier Ltd.
https://doi.org/10.1016/j.proeng.2014.11.446
Habib, I. (1992). Pursuing the History of Indian Technology: Pre-Modern Modes of Transmission of Power. Social Scientist, 20(3/4), 1.
https://doi.org/10.2307/3517685
Matthies, A. L. (1992). Medieval Treadwheels: Artists' Views of Building Construction. Technology and Culture, 33(3), 510.
https://doi.org/10.2307/3106635
Jijakli, S. M. B., & Arkawi, A. M. W. (2020). Norias of orontes river in the historical arabic texts. Scientific Journal of King Faisal University, 21(2), 46-53.
https://doi.org/10.37575/h/his/1757
De Miranda, A. (2014). Water-harvesting tradition in Syrian steppe. In Procedia Engineering (Vol. 89, pp. 1522-1528). Elsevier Ltd.
https://doi.org/10.1016/j.proeng.2014.11.446
Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., & Angelakis, A. N. (2015). Evolution of water lifting devices (Pumps) over the centuries worldwide. Water (Switzerland), 7(9), 5031-5060.
https://doi.org/10.3390/w7095031
Killingtveit, Å. (2020). Hydroelectric power. In Future Energy: Improved, Sustainable and Clean Options for Our Planet (pp. 315-330). Elsevier.
https://doi.org/10.1016/B978-0-08-102886-5.00015-3
Franco, W., Ferraresi, C., & Revelli, R. (2019). Functional analysis of piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines, 7(2).
https://doi.org/10.3390/machines7020032
Mitković, M., Đekić, J., Mitković, P., & Igić, M. (2021). Research on First Mini Solar Power Plants to Produce Electric Power on the South Serbia. In Research Anthology on Clean Energy Management and Solutions (pp. 1858-1868). IGI Global.
https://doi.org/10.4018/978-1-7998-9152-9.ch082
M. F. Basar, A. M. Norazizi, I. Mustaffa, C. T. Colin, S. N. S. Mirin, and Z. Jano, "Investigation on the performance of a portable power generation system with a low-cost vertical axis wind turbine," Eng. technol. Appl. sci. res., vol. 11, no. 6, pp. 7809-7813, 2021.
https://doi.org/10.48084/etasr.4454
Manders, T. N., Höffken, J. I., & Van Der Vleuten, E. B. A. (2016, June 1). Small-scale hydropower in the Netherlands: Problems and strategies of system builders. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
https://doi.org/10.1016/j.rser.2015.12.100
Ridzuan, M. J. M., Hafis, S. M., Azduwin, K., Firdaus, K. M., & Zarina, Z. (2014). Development of Pico-Hydro Turbine for Domestic Use. Applied Mechanics and Materials, 695, 408-412.
https://doi.org/10.4028/www.scientific.net/AMM.695.408
Uamusse, M. M., Tussupova, K., Persson, K. M., & Berndtsson, R. (2019). Mini-grid hydropower for rural electrification in mozambique: Meeting local needs with supply in a nexus approach. Water (Switzerland), 11(2).
https://doi.org/10.3390/w11020305
Yah, N. F., Oumer, A. N., & Idris, M. S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
https://doi.org/10.1016/j.rser.2017.01.068
Kapoor, R. (2012). PICO Power A Boon For Rural Electrification. International Journal of Scientific Research, 2(9), 159-161.
https://doi.org/10.15373/22778179/SEP2013/57
Rajan, R. V., Suresh, K., Sanu, I. P. E., Kurup, A. K., & George, A. M. (2016). Pico-hydro electric power generation from residential water tank. International Journal of Chemical Sciences, 14(1), 421-426.
M. Musa, J. Ab Razak, M. Mohd Tahir, I. S. Mohamad, and M. N. Othman, "Small Scale Hydro Turbines for Sustainable Rural Electrification Program", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 49, no. 2, pp. 138-145, Dec. 2020.
Towoju, O., Ishola, F., Pros and Cons of Electricity Generation from Different Available Sources, (2020) International Review of Mechanical Engineering (IREME), 14 (6), pp. 374-380.
https://doi.org/10.15866/ireme.v14i6.19104
Suntoyo, S., Comparison of Turbulence Models in the Turbulent Wave Boundary Layer for Cnoidal Waves, (2020) International Journal on Engineering Applications (IREA), 8 (5), pp. 202-214.
https://doi.org/10.15866/irea.v8i5.19507
Boulaoutaq, E., Kourchi, M., Rachdy, A., Active Disturbance Rejection Control Strategy for Direct Power Control of a DFIG-Based Wind Turbine Connected to the Undisturbed Utility Grid, (2020) International Journal on Engineering Applications (IREA), 8 (5), pp. 165-177.
https://doi.org/10.15866/irea.v8i5.19441
D. P. Sari, H. Helmizar, I. Syofii, D. Darlius, and D. Adanta, "The Effect of the Ratio of Wheel Tangential Velocity and Upstream Water Velocity on the Performance of Undershot Waterwheels", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 65, no. 2, pp. 170-177, Dec. 2020.
M. F. Basar, F. S. Mohd Hassan, N. A. Rais, I. A. Zulkarnain, and W. A. Wan Mustafa, "Performance Analysis of Z-Blade Reaction Type Turbine for Low-Head Low Flowrate Pico Hydro", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 85, no. 2, pp. 51-65, Aug. 2021.
https://doi.org/10.37934/arfmts.85.2.5165
Hasim, N., M. F. Basar, and M. S. Aras. "Design and Development of a Water Bath Control System: A Virtual Laboratory Environment." In 2011 IEEE Student Conference on Research and Development. IEEE, 2011.
https://doi.org/10.1109/SCOReD.2011.6148773
Ababneh, M., Ishtay, A., A New Hydro-Compressed Air Storage System Using Repetitive-Controlled Technique, (2018) International Review of Mechanical Engineering (IREME), 12 (2), pp. 107-120.
https://doi.org/10.15866/ireme.v12i2.12614
M. R. Ramdhani, R. Irwansyah, B. Budiarso, W. Warjito, and D. Adanta, "Investigation of the 16 Blades Pico Scale Breastshot Waterwheel Performance in Actual River Condition", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 75, no. 1, pp. 38-47, Jan. 2021.
https://doi.org/10.37934/arfmts.75.1.3847
Basar, M.F. et al. Economic Analysis on Design of a Simple Hydraulic Reaction Type Turbine for Low-Head Low-Flow Pico Hydro. International Journal of Innovative Technology and Exploring Engineering 9, no. 2 (2019): 3876-3980. https://doi.org/10.35940/ijitee.b7257.129219
https://doi.org/10.35940/ijitee.B7257.129219
Yaakub, M. F., M. F. Basar, F. H. Noh, and Hambali Boejang, "Pico-hydro Electrification from Rainwater's Gravitational Force for Urban Area," TELKOMNIKA (Telecommunication Computing Electronics and Control) 16, no. 3 (2018), 997. doi:10.12928/telkomnika. v16i3.8076.
https://doi.org/10.12928/telkomnika
Farriz Basar, M., Azhan Ab Rahman, A. Din, Y. Yahaya, and Z. Mahmod. "Design and Development of Green Electricity Generation System Using Ocean Surface Wave." In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010). IEEE, 2010.
https://doi.org/10.1109/ESD.2010.5598773
Belkacem, S., Beghidja, A., Numerical Investigation of Coaxial Turbulent Jet, (2019) International Review of Mechanical Engineering (IREME), 13 (2), pp. 78-86.
https://doi.org/10.15866/ireme.v13i2.16668
Basar, M. F., A. Ahmad, N. Hasim, and K. Sopian. "Introduction to the Pico Hydro Power and the Status of Implementation in Malaysia." In 2011 IEEE Student Conference on Research and Development. IEEE, 2011.
https://doi.org/10.1109/SCOReD.2011.6148751
Paul, R., Kriparaj, K., Tide, P., Biju, N., Design and Installation of Supersonic Free Jet Test Facility with Flow Visualization, (2020) International Journal on Engineering Applications (IREA), 8 (6), pp. 233-240.
https://doi.org/10.15866/irea.v8i6.19966
D. Adanta, B. Budiarso, and A. I. Siswantara, "Assessment of Turbulence Modelling for Numerical Simulations into Pico Hydro Turbine", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 46, no. 1, pp. 21-31, Dec. 2020.
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize