Open Access Open Access  Restricted Access Subscription or Fee Access

An Experimental Investigation of Overshot Waterwheel in Very Low Head Water Resources for Pico Hydro

(*) Corresponding author

Authors' affiliations



Waterwheels are considered a low-cost and simple alternative method for rural electrification and this paper aims to investigate the performance of a non-complex geometrical design of overshot waterwheel in a pico hydro system. The waterwheel and the hydro system have been assessed at very low water heads condition at 1.5 m water and 5 L/s flow rate using a water test rig. According to the experimental results, the proposed waterwheel manages to achieve significant rotational speed, mechanical torque, and efficiency. The rotational speed has produced more than 130 rpm with mechanical torque reaching up to 1.2 Nm. Analytically, the turbine with four bottles per blade has an efficiency of 32 %. This is higher than the efficiency of three bottles per blade at 24 %. The results have also indicated that the overall performance of overshot water wheels with four bottles blade is higher than the three bottles per blade. Furthermore, certain specific values of water head and flow rate have been found out to be able to obtain the optimum efficiency. At the same time, the values of water head and water flow rate have been also found to be proportional with the value of the mechanical torque produced. Finally, the ability of the proposed system to produce a considerable output for power generation has showed that it is potentially viable to be used at the actual field.
Copyright © 2022 Praise Worthy Prize - All rights reserved.


Low Head; Overshot; Pico Hydro; Water Wheel

Full Text:



Farriz, M. B., H. Boejang, M. Masjuri, M. S. M. Aras, N. H. A. Razik, S. Mate, and K. Sopian. Evolution of Simple Reaction Type Turbines for Pico-Hydro Applications. Jurnal Teknologi 77, no. 32 (2015).

Kirke, Brian. Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development 52 (2019), 1-10.

Saavedra, A., Galvis, N., Mesa, F., Banguero, E., Castaneda, M., Zapata, S., Aristizabal, A., Current State of the Worldwide Renewable Energy Generation: a Review, (2021) International Journal on Engineering Applications (IREA), 9 (3), pp. 115-127.

Rais, N. A. M., and M. F. Basar. Pico-Hydro Generation System: Empirical Investigation on a Novel Z-Blade Low-Head Low-Flow Water Turbine. International Journal of Renewable Energy Research (IJRER) 11, no. 1 (2021): 108-113.

Kumara, L. H. L. T. P. (2014). Analysis of Floating Type Water Wheel for Pico Hydro Systems in Sri Lanka. Energy Technology EGI.

Şen, Z. (2013). Ancient water robotics and Abou-l Iz Al-Jazari. Water Science and Technology: Water Supply, 13(3), 699-709.

Shulman, J.-C. (2017). Water-Lifting Technology in the Graeco-Roman World and Its Development through the Renaissance. In A Tale of Three Thirsty Cities (pp. 29-97). BRILL.

Munro, J. (2002). Industrial Energy from Water-Mills in the European Economy, Fifth to Eighteenth Centuries: the Limitations of Power. Distribution, (11027), 64.

Franco, W., Ferraresi, C., & Revelli, R. (2019). Functional analysis of piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines, 7(2).

Fasol, K. H. (2002). A Short History of Hydropower Control. IEEE Control Systems, 22(4), 68-76.

Mächtle, B., Hecht, S., Manke, N., Kromer, B., Lindauer, S., Li, C. S., … Bubenzer, O. (2019). The age and origin of Karez systems of silk road oases around Turpan, Xinjiang, P.R. of China. In Socio-Environmental Dynamics Along the Historical Silk Road (pp. 359-378). Springer International Publishing.

Viollet, P. L. (2017, August 1). From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions. Comptes Rendus - Mecanique. Elsevier Masson SAS.

Shi, X. (2019). The hydraulic tilt hammer in ancient China. In History of Mechanism and Machine Science (Vol. 37, pp. 113-122). Springer.

Quaranta, E., Fontan, S., Cavagnero, P., & Revelli, R. (2015). Efficiency of Traditional Water Wheels. IAHR World Congress, 3-6.

De Miranda, A. (2014). Water-harvesting tradition in Syrian steppe. In Procedia Engineering (Vol. 89, pp. 1522-1528). Elsevier Ltd.

Habib, I. (1992). Pursuing the History of Indian Technology: Pre-Modern Modes of Transmission of Power. Social Scientist, 20(3/4), 1.

Matthies, A. L. (1992). Medieval Treadwheels: Artists' Views of Building Construction. Technology and Culture, 33(3), 510.

Jijakli, S. M. B., & Arkawi, A. M. W. (2020). Norias of orontes river in the historical arabic texts. Scientific Journal of King Faisal University, 21(2), 46-53.

De Miranda, A. (2014). Water-harvesting tradition in Syrian steppe. In Procedia Engineering (Vol. 89, pp. 1522-1528). Elsevier Ltd.

Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., & Angelakis, A. N. (2015). Evolution of water lifting devices (Pumps) over the centuries worldwide. Water (Switzerland), 7(9), 5031-5060.

Killingtveit, Å. (2020). Hydroelectric power. In Future Energy: Improved, Sustainable and Clean Options for Our Planet (pp. 315-330). Elsevier.

Franco, W., Ferraresi, C., & Revelli, R. (2019). Functional analysis of piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines, 7(2).

Mitković, M., Đekić, J., Mitković, P., & Igić, M. (2021). Research on First Mini Solar Power Plants to Produce Electric Power on the South Serbia. In Research Anthology on Clean Energy Management and Solutions (pp. 1858-1868). IGI Global.

M. F. Basar, A. M. Norazizi, I. Mustaffa, C. T. Colin, S. N. S. Mirin, and Z. Jano, "Investigation on the performance of a portable power generation system with a low-cost vertical axis wind turbine," Eng. technol. Appl. sci. res., vol. 11, no. 6, pp. 7809-7813, 2021.

Manders, T. N., Höffken, J. I., & Van Der Vleuten, E. B. A. (2016, June 1). Small-scale hydropower in the Netherlands: Problems and strategies of system builders. Renewable and Sustainable Energy Reviews. Elsevier Ltd.

Ridzuan, M. J. M., Hafis, S. M., Azduwin, K., Firdaus, K. M., & Zarina, Z. (2014). Development of Pico-Hydro Turbine for Domestic Use. Applied Mechanics and Materials, 695, 408-412.

Uamusse, M. M., Tussupova, K., Persson, K. M., & Berndtsson, R. (2019). Mini-grid hydropower for rural electrification in mozambique: Meeting local needs with supply in a nexus approach. Water (Switzerland), 11(2).

Yah, N. F., Oumer, A. N., & Idris, M. S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd.

Kapoor, R. (2012). PICO Power A Boon For Rural Electrification. International Journal of Scientific Research, 2(9), 159-161.

Rajan, R. V., Suresh, K., Sanu, I. P. E., Kurup, A. K., & George, A. M. (2016). Pico-hydro electric power generation from residential water tank. International Journal of Chemical Sciences, 14(1), 421-426.

M. Musa, J. Ab Razak, M. Mohd Tahir, I. S. Mohamad, and M. N. Othman, "Small Scale Hydro Turbines for Sustainable Rural Electrification Program", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 49, no. 2, pp. 138-145, Dec. 2020.

Towoju, O., Ishola, F., Pros and Cons of Electricity Generation from Different Available Sources, (2020) International Review of Mechanical Engineering (IREME), 14 (6), pp. 374-380.

Suntoyo, S., Comparison of Turbulence Models in the Turbulent Wave Boundary Layer for Cnoidal Waves, (2020) International Journal on Engineering Applications (IREA), 8 (5), pp. 202-214.

Boulaoutaq, E., Kourchi, M., Rachdy, A., Active Disturbance Rejection Control Strategy for Direct Power Control of a DFIG-Based Wind Turbine Connected to the Undisturbed Utility Grid, (2020) International Journal on Engineering Applications (IREA), 8 (5), pp. 165-177.

D. P. Sari, H. Helmizar, I. Syofii, D. Darlius, and D. Adanta, "The Effect of the Ratio of Wheel Tangential Velocity and Upstream Water Velocity on the Performance of Undershot Waterwheels", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 65, no. 2, pp. 170-177, Dec. 2020.

M. F. Basar, F. S. Mohd Hassan, N. A. Rais, I. A. Zulkarnain, and W. A. Wan Mustafa, "Performance Analysis of Z-Blade Reaction Type Turbine for Low-Head Low Flowrate Pico Hydro", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 85, no. 2, pp. 51-65, Aug. 2021.

Hasim, N., M. F. Basar, and M. S. Aras. "Design and Development of a Water Bath Control System: A Virtual Laboratory Environment." In 2011 IEEE Student Conference on Research and Development. IEEE, 2011.

Ababneh, M., Ishtay, A., A New Hydro-Compressed Air Storage System Using Repetitive-Controlled Technique, (2018) International Review of Mechanical Engineering (IREME), 12 (2), pp. 107-120.

M. R. Ramdhani, R. Irwansyah, B. Budiarso, W. Warjito, and D. Adanta, "Investigation of the 16 Blades Pico Scale Breastshot Waterwheel Performance in Actual River Condition", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 75, no. 1, pp. 38-47, Jan. 2021.

Basar, M.F. et al. Economic Analysis on Design of a Simple Hydraulic Reaction Type Turbine for Low-Head Low-Flow Pico Hydro. International Journal of Innovative Technology and Exploring Engineering 9, no. 2 (2019): 3876-3980.

Yaakub, M. F., M. F. Basar, F. H. Noh, and Hambali Boejang, "Pico-hydro Electrification from Rainwater's Gravitational Force for Urban Area," TELKOMNIKA (Telecommunication Computing Electronics and Control) 16, no. 3 (2018), 997. doi:10.12928/telkomnika. v16i3.8076.

Farriz Basar, M., Azhan Ab Rahman, A. Din, Y. Yahaya, and Z. Mahmod. "Design and Development of Green Electricity Generation System Using Ocean Surface Wave." In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010). IEEE, 2010.

Belkacem, S., Beghidja, A., Numerical Investigation of Coaxial Turbulent Jet, (2019) International Review of Mechanical Engineering (IREME), 13 (2), pp. 78-86.

Basar, M. F., A. Ahmad, N. Hasim, and K. Sopian. "Introduction to the Pico Hydro Power and the Status of Implementation in Malaysia." In 2011 IEEE Student Conference on Research and Development. IEEE, 2011.

Paul, R., Kriparaj, K., Tide, P., Biju, N., Design and Installation of Supersonic Free Jet Test Facility with Flow Visualization, (2020) International Journal on Engineering Applications (IREA), 8 (6), pp. 233-240.

D. Adanta, B. Budiarso, and A. I. Siswantara, "Assessment of Turbulence Modelling for Numerical Simulations into Pico Hydro Turbine", J. Adv. Res. Fluid Mech. Therm. Sc., vol. 46, no. 1, pp. 21-31, Dec. 2020.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize