Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis of the Relaxation Process of Welding Residual Stresses Using a Combined and Nonlinear Hardening Model


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v10i4.21313

Abstract


This article applies a combination of hardening models to analyze the relaxation process of residual stresses. The obtained results can be used to estimate the final stress state in welded structures after the load application. This work begins by modeling the evolution of residual stresses produced by the thermal cycle during welding process. Subsequently, this stresses obtained by finite element calculations will be subjected to a mechanical relaxation process. In order to ensure the accuracy of the relaxation model, the plastic behavior of the material has been integrated by modeling two non-linear hardening models, which are combined and applied in the same relaxation process. The results have made it possible to visualize the final state of the residual stress field after relaxations. Then these results are analyzed in order to assess the impact of plasticity on the relaxation process.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Isotropic Hardening; Kinematic Hardening; Relaxation Process; Residual Stresses; Welded Joint

Full Text:

PDF


References


Jaap Schijve, Residual Stress, In Jaap Schijve (Ed.) Fatigue of Structures and Materials, (Springer, 2009,89-104).
https://doi.org/10.1007/978-1-4020-6808-9

I. C. Noyan, J. B. Cohen, Introduction, In B.Ilschner, N J. Grant (Ed.) Residual stress: measurement by diffraction and interpretation, (New York : Springer-Verlag, 1987,1-12).

A. Świetlicki, M. Szala, M. Walczak, Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials-A Short Review, Materials, vol.15, (2022) 2476.
https://doi.org/10.3390/ma15072476

A. Staub, M. Scherer, P. Zehnder, A.B. Spierings, K. Wegener, Residual Stresses Measurements in Laser Powder Bed Fusion Using Barkhausen Noise Analysis, Materials, vol.15, (2022) 2676.
https://doi.org/10.3390/ma15072676

Bouazaoui, O., Chouaf, A., Severity of the Residual Stress Depending on the Width of Welding in the Rails, (2016) International Review of Mechanical Engineering (IREME), 10 (7), pp. 523-530.
https://doi.org/10.15866/ireme.v10i7.9730

Zaoui, M., Bouchoucha, A., Influence of Heat Treatments on the Impact Strength for Welded Constructions, (2014) International Journal on Heat and Mass Transfer - Theory and Applications (IREHEAT), 2 (6).

W. Zhen, H. Li, Q. Wang, Simulation of residual stress in aluminum alloy welding seam based on computer numerical simulation, vol. 258, Optik. 2022.
https://doi.org/10.1016/j.ijleo.2022.168785

H. Soyama, C.R. Chighizola, M.R. Hill, Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel, Journal of Materials Processing Technology, 2021, pp. 1-10.
https://doi.org/10.1016/j.jmatprotec.2020.116877

Y. Li, J. Chen, J. Wang, X. Shi, L. Chen, Study on the effect of residual stresses on fatigue crack initiation in rails, International Journal of Fatigue, 2020, pp. 1-7.
https://doi.org/10.1016/j.ijfatigue.2020.105750

A. Chiocca, F. Frendo, L. Bertini, Residual stresses influence on the fatigue strength of structural components, Procedia Structural Integrity, vol. 38, 2022, pp. 447-456.
https://doi.org/10.1016/j.prostr.2022.03.045

W. Jiang, Y. Yu, W. Zhang, C. Xiao, W. Woo, Residual stress and stress fields change around fatigue crack tip: Neutron diffraction measurement and finite element modeling, International Journal of Pressure Vessels and Piping. 2020, pp. 2-10.
https://doi.org/10.1016/j.ijpvp.2019.104024

R.Y. Bo Hu, Variations in surface residual compressive stress and magnetic induction intensity of 304 stainless steel, NDT&E International. 2016, pp. 1-5.
https://doi.org/10.1016/j.ndteint.2016.02.003

K. Minamizawa, J. Arakawa, H. Akebono, K. Nambu, Y. Nakamura, M. Hayakawa, S. Kikuchi, Fatigue limit estimation for carburized steels with surface compressive residual stress considering residual stress relaxation, International Journal of Fatigue, vol. 160, 2022.
https://doi.org/10.1016/j.ijfatigue.2022.106846

D.-W. Cho, J.-H. Park, H.-S. Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, vol.139, (2019), pp. 848-859.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

A. Kiran, Y. Li, J. Hodek, M. Brázda, M. Urbánek, J. Džugan, Heat Source Modeling and Residual Stress Analysis for Metal Directed Energy Deposition Additive Manufacturing, Materials, vol.15 (2022), 2545.
https://doi.org/10.3390/ma15072545

X. Yao, Y. Wang, J. Leng, A general finite element method: Extension of variational analysis for nonlinear heat conduction with temperature-dependent properties and boundary conditions, and its implementation as local refinement, Computers & Mathematics with Applications, vol.100, (2021),pp. 11-29.
https://doi.org/10.1016/j.camwa.2021.08.024

J. Goldak, A. C, A new finite element model for welding heat sources, Metallurgical Transactions, 1984, pp. 299-305.
https://doi.org/10.1007/BF02667333

T. Inoue, Thermal-metallurgical-mechanical interactions during welding, In Z. Feng (ed.), Processes and mechanisms of welding residual stress and distortion, (Cambridge : Woodhead, 2005, 99-124).
https://doi.org/10.1533/9781845690939.1.99

K.R. Krishna Murthy, F. Akyel, U. Reisgen, S. Olschok, Simulation of transient heat transfer and phase transformation in laser beam welding for low alloy steel and studying its influences on the welding residual stresses, Journal of Advanced Joining Processes, vol. 5, (2022), 100080.
https://doi.org/10.1016/j.jajp.2021.100080

S.-W. Han, W.-I. Cho, L.-J. Zhang, S.-J. Na, Coupled simulation of thermal-metallurgical-mechanical behavior in laser keyhole welding of AH36 steel, Materials & Design, vol. 212, (2021), 110275.
https://doi.org/10.1016/j.matdes.2021.110275

T. Rajkumar, M.P. Prabakaran, G. Arunkumar, P. Parameshwaran, Evaluation of mechanical and metallurgical properties of submerged arc welded plate joint, Materials Today: Proceedings, vol.37, (2021), pp. 1367-1371.
https://doi.org/10.1016/j.matpr.2020.06.563

A. Mashhuriazar, C. Hakan Gur, Z. Sajuri, H. Omidvar, Effects of heat input on metallurgical behavior in HAZ of multi-pass and multi-layer welded IN-939 superalloy, Journal of Materials Research and Technology, vol.15, (2021), pp.1590-1603.
https://doi.org/10.1016/j.jmrt.2021.08.113

D.F. Watt, L. Coon, M. Bibby, J. Goldak, C. Henwood, An algorithm for modelling microstructural development in weld heat-affected zones (part a) reaction kinetics, Acta Metallurgica, vol.36, (1988), pp.3029-3035.
https://doi.org/10.1016/0001-6160(88)90185-X

V. Bharadwaj, A.K. Rai, B.N. Upadhyaya, R. Singh, S.K. Rai, K.S. Bindra, A study on effect of heat input on mode of welding, microstructure and mechanical strength in pulsed laser welding of Zr-2.5 wt.%Nb alloy, Journal of Nuclear Materials, vol. 564, (2022), 153685.
https://doi.org/10.1016/j.jnucmat.2022.153685

W. Chen, L. Xu, L. Zhao, Y. Han, H. Jing, Y. Zhang, Y. Li, Thermo-mechanical-metallurgical modeling and validation for ferritic steel weldments, Journal of Constructional Steel Research, vol.166, (2020), 105948.
https://doi.org/10.1016/j.jcsr.2020.105948

W.Z. Zhuang, G.R. Halford, Investigation of residual stress relaxation under cyclic load, International Journal of Fatigue, (2001), pp. 31-37.
https://doi.org/10.1016/S0142-1123(01)00132-3

Y. Liu, K.S. Tsang, N.A. Subramaniam, J.H.L. Pang, Structural fatigue investigation of thermite welded rail joints considering weld-induced residual stress and stress relaxation by cyclic load, Engineering Structures, vol. 235, 2021.
https://doi.org/10.1016/j.engstruct.2021.112033

Z. Liu, S. Wang, Y. Feng, Y. Peng, J. Gong, M.A.J. Somers, Residual stress relaxation in the carburized case of austenitic stainless steel under alternating loading, International Journal of Fatigue, vol.159, (2022), 106837.
https://doi.org/10.1016/j.ijfatigue.2022.106837

M.S. Ghorashi, G.H. Farrahi, M.R. Movahhedy, Considering cyclic plasticity to predict residual stresses in laser cladding of Inconel 718 multi bead samples, Journal of Manufacturing Processes, vol.42, (2019), pp.149-158.
https://doi.org/10.1016/j.jmapro.2019.05.002

Kabir, S., Yeo, T., Characterization of Unified Material Parameters in Elasto-Plastic Continuum Approach, (2013) International Journal on Advanced Materials and Technologies (IREAMT), 1 (6), pp. 241-251.

A. Abel, H. Muir, The effect of cyclic loading on subsequent yielding, Acta Metallurgica, vol.21, (1973), pp. 93-97.
https://doi.org/10.1016/0001-6160(73)90051-5

H. Mahdavi, K. Poulios, Y. Kadin, C.F. Niordson, Finite element study of cyclic plasticity near a subsurface inclusion under rolling contact and macro-residual stresses, International Journal of Fatigue, vol. 143,(2021).
https://doi.org/10.1016/j.ijfatigue.2020.105981

T. Kurtyka, Distortional Model of Plastic Hardening, J. Lemaître (Ed), Handbook of Materials Behavior Models, (ACADEMIC PRESS, 2001, 166-174).
https://doi.org/10.1016/B978-012443341-0/50017-X

L. Zhao, L. Xu, Y. Han, H. Jing, Z. Gao, Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation, International Journal of Mechanical Sciences, Vol. 161-162, (2019).
https://doi.org/10.1016/j.ijmecsci.2019.105016

D.C. DRUCKER, Background on Isotropic Criteria, J. Lemaître (Ed), Handbook of Materials Behavior Models, (ACADEMIC PRESS, 2001, 129-136).
https://doi.org/10.1016/B978-012443341-0/50014-4

I.A. Daniyan, K. Mpofu, F.O. Fameso, A.O. Adeodu, K.A. Bello, Development and Simulation of Isotropic Hardening for AISI 1035 Weld Stress Prediction during Design and Welding Assembly of Lower Brackets of Rail Cars, Procedia CIRP, vol.84, (2019), pp.916-922.
https://doi.org/10.1016/j.procir.2019.04.297

A. Zhang, D. Mohr, Using neural networks to represent von Mises plasticity with isotropic hardening, International Journal of Plasticity, vol.132,(2020), 102732.
https://doi.org/10.1016/j.ijplas.2020.102732

H.-C. Wu, The flow theory of Plasticity, D.Gao, R.W. Ogden In (Ed.), Continuum mechanics and plasticity, (United States of America, Chapman & Hall/CRC Press, 2005, 265-317).

O. Bouaziz, J. Moon, H.S. Kim, Y. Estrin, Isotropic and kinematic hardening of a high entropy alloy, Scripta Materialia, vol.191, (2021), pp.107-110.
https://doi.org/10.1016/j.scriptamat.2020.09.022

P. Haupt, C. Tsakmakis, On kinematic hardening and large plastic deformations, International Journal of Plasticity, vol.2, (1986), pp.279-293.
https://doi.org/10.1016/0749-6419(86)90004-5

D. Marquis, Cyclic Plasticity Model with Nonlinear Isotropic and Kinematic Hardenings, NoLIKH Model, J. Lemaître (Ed), Handbook of Materials Behavior Models, (ACADEMIC PRESS, 2001, 213-222).
https://doi.org/10.1016/B978-012443341-0/50023-5

H. Pashazad, M. Kharazi, A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading, International Journal of Mechanical Sciences. vol.156, (2019), pp.182-204.
https://doi.org/10.1016/j.ijmecsci.2019.03.033

A. Nath, K.K. Ray, S.V. Barai, Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique, International Journal of Mechanical Sciences, vol.152, (2019), pp.138-150.
https://doi.org/10.1016/j.ijmecsci.2018.12.047

A. Dogui, F. Sidoroff, Kinematic hardening in large elastoplastic strain, Engineering Fracture Mechanics, vol.21, (1985), pp.685-695.
https://doi.org/10.1016/0013-7944(85)90078-5

H. Badreddine, K. Saanouni, C. Labergère, J.-L. Duval, Effect of the kinematic hardening on the plastic anisotropy parameters for metallic sheets, Comptes Rendus Mécanique, vol.346, (2018), pp.678-700.
https://doi.org/10.1016/j.crme.2018.06.004

P.J. Armstrong, C.O. Frederick, A mathematical representation of the multiaxial Bauschinger effects, RD/B/N731, Berkeley Nuclear Laboratories, 1966, pp. 1-26.

M.C. Butuc, C. Teodosiu, F. Barlat, J.J. Gracio, Analysis of sheet metal formability through isotropic and kinematic hardening models, European Journal of Mechanics - A/Solids, vol.30, (2011), pp.532-546.
https://doi.org/10.1016/j.euromechsol.2011.03.005

S.-Y. Leu, K.-C. Liao, Y.-C. Lin, Plastic limit pressure of spherical vessels with combined hardening involving large deformation, International Journal of Pressure Vessels and Piping, vol.114-115, (2014), pp.16-22.
https://doi.org/10.1016/j.ijpvp.2013.11.007

H. Johannessen, O.H. Johannessen, M. Costas, A.H. Clausen, J.K. Sønstabø, Experimental and numerical study of notched SHS made of different S355 steels, Journal of Constructional Steel Research, vol.182, (2021), 106673.
https://doi.org/10.1016/j.jcsr.2021.106673

P. Sivák, P. Frankovský, I. Delyová, J. Bocko, J. Kostka, B. Schürger, Influence of Different Strain Hardening Models on the Behavior of Materials in the Elastic-Plastic Regime under Cyclic Loading, Materials, vol.13, (2020), 5323.
https://doi.org/10.3390/ma13235323

W. Prager, Recent Developments in the Mathematical Theory of Plasticity, Journal of Applied Physics, 1949, pp. 235-241.
https://doi.org/10.1063/1.1698348

H. Mahbadi, M.R. Eslami, Cyclic loading of beams based on the Prager and Frederick-Armstrong kinematic hardening models, International Journal of Mechanical Sciences, vol.44, (2002), pp.859-879.
https://doi.org/10.1016/S0020-7403(02)00033-4

S. Aygün, T. Wiegold, S. Klinge, Coupling of the phase field approach to the Armstrong-Frederick model for the simulation of ductile damage under cyclic load, International Journal of Plasticity, Vol. 134, (2021).
https://doi.org/10.1016/j.ijplas.2021.103021

W. Dettmer, S. Reese, On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime, Computer Methods in Applied Mechanics and Engineering, vol.193, (2004), pp.87-116.
https://doi.org/10.1016/j.cma.2003.09.005

J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, (2008), pp. 1642-1693.
https://doi.org/10.1016/j.ijplas.2008.03.009

L.-T. Hai, G.-Q. Li, Y.-B. Wang, Y.-Z. Wang, A fast calibration approach of modified Chaboche hardening rule for low yield point steel, mild steel and high strength steels, Journal of Building Engineering, (2021), pp. 1-22.
https://doi.org/10.1016/j.jobe.2021.102168

J. Han, K.P. Marimuthu, S. Koo, H. Lee, Numerical implementation of modified Chaboche kinematic hardening model for multiaxial ratcheting, Computers & Structures, vol.231, (2020) 106222.
https://doi.org/10.1016/j.compstruc.2020.106222

American Welding Society, Y.-P. Yang, Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 1, WJ, vol.100,(2021), pp.151-170.
https://doi.org/10.29391/2021.100.013

I. Daniyan, K. Mpofu, F. Fameso, F. Ale, Simulation of kinematic hardening model for carbon steel AISI 1035 weld stress prediction during the welding assembly of a railcar, Procedia CIRP, vol.93, (2020), pp.520-526.
https://doi.org/10.1016/j.procir.2020.04.057

K.A. Meyer, M. Ekh, J. Ahlström, Modeling of kinematic hardening at large biaxial deformations in pearlitic rail steel, International Journal of Solids and Structures, vol.130-131, (2018), pp.122-132.
https://doi.org/10.1016/j.ijsolstr.2017.10.007

H. Yang, W. Zhang, X. Zhuang, Z. Zhao, Calibration of Chaboche Combined Hardening Model for Large Strain Range, Procedia Manufacturing, vol.47, (2020), pp.867-872.
https://doi.org/10.1016/j.promfg.2020.04.272

N. Manopulo, F. Barlat, P. Hora, Isotropic to distortional hardening transition in metal plasticity, International Journal of Solids and Structures. (2015), pp.11-19.
https://doi.org/10.1016/j.ijsolstr.2014.12.015

J. Qin, B. Holmedal, O.S. Hopperstad, A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes, International Journal of Plasticity, (2018), pp.156-169.
https://doi.org/10.1016/j.ijplas.2017.10.013

P. Krolo, D. Grandić, Ž. Smolčić, Experimental and Numerical Study of Mild Steel Behaviour under Cyclic Loading with Variable Strain Ranges, Advances in Materials Science and Engineering, (2016), pp.1-13.
https://doi.org/10.1155/2016/7863010

J. Sun, J. Hensel, J. Klassen, T. Nitschke-Pagel, K. Dilger, Solid-state phase transformation and strain hardening on the residual stresses in S355 steel weldments, Journal of Materials Processing Technology, vol,.265, (2019), pp.173-184.
https://doi.org/10.1016/j.jmatprotec.2018.10.018


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize