Open Access Open Access  Restricted Access Subscription or Fee Access

Assessment of the Uncertainty for the Spatial Distribution of Lightning Discharge Density Based on the Smoothed Bootstrap Procedure and WWLLN Data: a Case Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v10i2.20850

Abstract


Thunderstorm activity is the most common natural cause of forest fires. Such forest fires can affect the functioning of industrial and infrastructure facilities. An effective application of the deterministic-probabilistic approach is possible if there is a set of initial data, including cloud-to-ground lightning discharges. It is especially important to understand the boundaries of uncertainty in determining the spatial distribution of the density of lightning discharges in a controlled forest-covered area. The aim of this work is to develop a procedure for assessing the uncertainty of the spatial distribution of lightning discharge density using a smoothed bootstrap algorithm and World Wide Lightning Location Network (WWLLN) data. The novelty of the work is due to the use of WWLLN data in combination with bootstrap algorithm in order to assess uncertainty of spatial distribution of lightning activity. The main findings are: 1) algorithm of bootstrap procedure to assess uncertainty in lightning discharge density within spatial distribution; 2) program realization of this algorithm using QGIS and GRASS software; 3) case study results for the typical boreal zone, namely, Republic of Buryatia (Russian Federation). Conclusions based on the results of bootstrap assessment of lightning discharge density uncertainty are presented regarding spatial distribution of lightning discharges. These results are applicable for forest fire danger prediction in lightning activity conditions.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Assessment; Lightning Discharge; WWLLN; Forest Fire Danger; Bootstrap; Uncertainty

Full Text:

PDF


References


Baranovskii N.V. Probabilistic criterion of fire safety of oil and gas industry facilities exposed to effect of forest fires // Chemical and Petroleum Engineering. 2015. Vol. 51. pp. 212-217.
https://doi.org/10.1007/s10556-015-0026-z

Grunstra M.R., Martell D.L. A history of railway fires in Ontario's forests // The Forestry Chronicle. 2014. Vol. 90. P. 314 - 320.
https://doi.org/10.5558/tfc2014-062

Baranovskii N.V. Ignition of Forest Combustible Materials by a Group of Crystallizing Metal Particles // Journal of Engineering Physics and Thermophysics. 2020. Vol. 93. pp. 635-640.
https://doi.org/10.1007/s10891-020-02161-0

Baranovskiy, N., Zakharevich, A., Mechanical, Thermophysical and Aerothermochemical Processes at Forest Fuel Ignition Caused by the Heated to High Temperatures Single Metal Particle, (2018) International Review of Mechanical Engineering (IREME), 12 (6), pp. 522-532.
https://doi.org/10.15866/ireme.v12i6.15065

Ruffault J., Mouillot F.(2017). Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. International Journal of Wildland Fire, 26, 498-508.
https://doi.org/10.1071/WF16181

Read N., Duff T.J., Taylor P.G. (2018) A lightning-induced wildfire ignition predicting model for operational use. Agricultural and Forest Meteorology, Vol. 253-254, pp. 233-246.
https://doi.org/10.1016/j.agrformet.2018.01.037

Baranovskiy N.V. Forecasting of forest fire danger in conditions of thunderstorm activity. Novosibirsk: Publishing house of the SB RAS. 2019. 242 P. (In Russian).

Baranovskiy N.V., Kuznetsov G.V. Forest fire occurrences and ecological impact prediction: monograph. Publishing House of the Siberian Branch of the Russian Academy of Science: Novosibirsk, Russian Federation, 2017.
https://doi.org/10.15372/FOREST2017BNV

Baranovskiy N.V., Kuznetsov G.V., Nemova T.N. Mathematical computing of coniferous tree ignition by the cloud-to-ground lightning discharge using Joule-Lenz's law // International Journal of Electrical and Computer Engineering. 2017. Vol. 7. pp. 1337-1346.
https://doi.org/10.11591/ijece.v7i3.pp1337-1346

Latham D., Williams E. (2001) Lightning and forest fires // Forest fires: Behavior and Ecological Effects. Netherlands, Amsterdam: Elsevier. P. 375 - 418.
https://doi.org/10.1016/B978-012386660-8/50013-1

Canadian Wildland Fire Information System. Official site. (Accessed 03 May 2021).
Access: http://cwfis.cfs.nrcan.gc.ca/home

WFAS Wildland Fire Assessment System. Official site. (Accessed 03 May 2021).
Access: http://www.wfas.net

European Forest Fire Information System. Official site. (Accessed 03 May 2021).
Access: http://effis.jrc.ec.europa.eu

Information system for remote monitoring of forest fires ISDM-Rosleskhoz. Official site. (Accessed 03 May 2021).
Access: https://nffc.aviales.ru/main_pages/index.shtml

Baranovskiy, N. V. (2021). Forest Fire Danger Prediction Using Deterministic-Probabilistic Approach. IGI Global.
https://doi.org/10.4018/978-1-7998-7250-4

Karanina, S. Y., Kocheeva, N. A., Karanin, A. V., & Belikova, M. Y. (2020). Assessing the Territory According to the Degree of Thunderstorm Danger. In Baranovskiy, N. V. (Ed.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (pp. 122-150). IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0.ch006

Karanina, S., Kocheeva, N., Belikova, M., Baranovskiy, N., Analysis of a Thunderstorm Activity According to WWLLN: a Case Study, (2018) International Review of Electrical Engineering (IREE), 13 (1), pp. 69-79.
https://doi.org/10.15866/iree.v13i1.14732

Baranovskiy N., Krechetova S., Belikova M., Perelygin A. WWLLN data cluster analysis methods for lightning-caused forest fires monitoring // International Journal of Electrical and Computer Engineering. 2016. Vol. 6. pp. 3112-3120.
https://doi.org/10.11591/ijece.v6i6.pp3112-3120

Diggle, P. J. Statistical Analysis of Spatial Point Patterns. London: Academic Press, 1983.

Virts, K. S., Wallace, J. M., Hutchins, M. L., & Holzworth, R. H. (2013). Highlights of a new ground-based, hourly global lightning climatology. Bulletin of the American Meteorological Society, 94(9), 1381-1391.
https://doi.org/10.1175/BAMS-D-12-00082.1

Beirle, S., Koshak, W., Blakeslee, R., Wagner, T., 2014. Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci. 14, 2715-2726.
https://doi.org/10.5194/nhess-14-2715-2014

Huffines, G. R., & Orville, R. E. (1999). Lightning ground flash density and thunderstorm durations in the continental United States: 1989-96. Journal of Applied Meteorology, 38, 1013-1019.
https://doi.org/10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2

Holle, R. L., & Murphy, M. J. (2015). Lightning in the North American Monsoon: An Exploratory Climatology, Monthly Weather Review, 143(5), 1970-1977.
https://doi.org/10.1175/MWR-D-14-00363.1

Gijben, M. (2012, April). Lightning climatology of South Africa with a special focus on lightning risk maps. In 22nd International Lightning Detection Conference, Broomfield, Colarado, USA (pp. 2-3).
https://doi.org/10.4102/sajs.v108i3/4.740

Holle, R. L., Cummins, K. L., & Brooks, W. A. (2016). Seasonal, monthly, and weekly distributions of NLDN and GLD360 cloud-to-ground lightning. Monthly Weather Review, 144(8), 2855-2870.
https://doi.org/10.1175/MWR-D-16-0051.1

Burrows, W. R., King, P., Lewis, P. J., Kochtubajda, B., Snyder, B., & Turcotte, V. (2002). Lightning occurrence patterns over Canada and adjacent United States from lightning detection network observations. Atmosphere-ocean, 40(1), 59-80.
https://doi.org/10.3137/ao.400104

Enno, S. E., Sugier, J., Alber, R., & Seltzer, M. (2020). Lightning flash density in Europe based on 10 years of ATDnet data. Atmospheric Research, 235, 104769.
https://doi.org/10.1016/j.atmosres.2019.104769

Tuomi, T. J., &Mäkelä, A. (2008). Thunderstorm climate of Finland 1998-2007. Geophysica, 44(1-2), 67-80.

Novák, P., & Kyznarová, H. (2011). Climatology of lightning in the Czech Republic. Atmospheric research, 100(4), 318-333.
https://doi.org/10.1016/j.atmosres.2010.08.022

Taszarek, M., Czernecki, B., &Kozioł, A. (2015). A cloud-to-ground lightning climatology for Poland. Monthly weather review, 143(11), 4285-4304.
https://doi.org/10.1175/MWR-D-15-0206.1

Tarabukina, L. D., & Kozlov, V. I. (2017, November). Climatology of lightning activity in northern Asia in 2009-2016. In 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (Vol. 10466, p. 104664O). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2287579

Karanina, S. Y., Karanin, A. V., Kocheeva, N. A., & Glebova, A. V. (2020, July). The distribution of lightning discharges across the altitude of the territory in the Altai-Sayan region. In Journal of Physics: Conference Series (Vol. 1604, No. 1, p. 012009). IOP Publishing.
https://doi.org/10.1088/1742-6596/1604/1/012009

KozlovV. I., MullayarovV. A., KarimovR. R. Spatial distribution of the density of lightning discharges in the East of Russia according to remote observations // Modern problems of remote sensing of the Earth from space. 2011. Vol. 8. N 3. P. 257-262.(In Russian).

Stallins, J. A., & Bentley, M. L. (2006). Urban lightning climatology and GIS: An analytical framework from the case study of Atlanta, Georgia. Applied Geography, 26(3-4), 242-259.
https://doi.org/10.1016/j.apgeog.2006.09.008

Shalev, S., Saaroni, H., Izsak, T., Yair, Y., & Ziv, B. (2011). The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems. Natural Hazards and Earth System Sciences, 11(8), 2125-2135.
https://doi.org/10.5194/nhess-11-2125-2011

Hu, H., Wang, J., & Pan, J. (2014). The characteristics of lightning risk and zoning in Beijing simulated by a risk assessment model. Natural Hazards and Earth System Sciences, 14(8), 1985-1997.
https://doi.org/10.5194/nhess-14-1985-2014

Poelman, D. R., Schulz, W., Diendorfer, G., & Bernardi, M. (2016). The European lightning location system EUCLID-Part 2: Observations. Natural Hazards and Earth System Sciences, 16(2), 607-616.
https://doi.org/10.5194/nhess-16-607-2016

Shephard, M. W., Morris, R., Burrows, W. R., & Welsh, L. (2013). A high-resolution Canadian lightning climatology. Atmosphere-ocean, 51(1), 50-59.
https://doi.org/10.1080/07055900.2012.755946

G. Amatulli, F. Perez-Cabello, and J. De La Riva, Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty, Ecol. Model., vol. 200, nos. 3-4, pp. 321-333, Jan. 2007.
https://doi.org/10.1016/j.ecolmodel.2006.08.001

W. Liu, W. Shixin, Z. Yi, W. Litao, and Z. Shujie, Spatial distribution patterns analysis of historical forest fires in DaXingAn Mountains of China, in Proc. Int. Conf. Comput. Appl. Syst. Model. , Oct. 2010, pp. V3-634-V3-638.

Bourscheidt, V., Pinto, O., Naccarato, K.P., 2014. Improvements on lightning density estimation based on analysis of lightning location system performance parameters: Brazilian case. IEEE Trans. Geosci. Remote Sens. 52, 1648-1657.
https://doi.org/10.1109/TGRS.2013.2253109

Etherington, T. R., & Perry, G. L. (2017). Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand. Computers & Geosciences, 98, 38-45.
https://doi.org/10.1016/j.cageo.2016.09.010

Bourscheidt, V., Pinto, O., Naccarato, K.P., 2014. Improvements on lightning density estimation based on analysis of lightning location system performance parameters: Brazilian case. IEEE Trans. Geosci. Remote Sens. 52, 1648-1657.
https://doi.org/10.1109/TGRS.2013.2253109

Shephard, M.W., Morris, R., Burrows, W.R., Welsh, L., 2013. A high-resolution Canadian lightning climatology. Atmos. Ocean 51, 50-59.
https://doi.org/10.1080/07055900.2012.755946

Schulz, W., Cummins, K., Diendorfer, G., & Dorninger, M. (2005). Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. Journal of Geophysical Research: Atmospheres, 110(D9).
https://doi.org/10.1029/2004JD005332

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.
https://doi.org/10.1201/9780429246593

Efron, B. (1981). Nonparametric standard errors and confidence intervals. Сanadian Journal of Statistics, 9(2), 139-158.
https://doi.org/10.2307/3314608

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics (pp. 569-593). Springer, New York, NY.
https://doi.org/10.1007/978-1-4612-4380-9_41

Hoaglin, D. C., Mosteller, F., & Tukey, J.W. (1983).Understanding robust and exploratory data analysis. New York: Wiley.

Silverman, B. W., & Young, G. A. (1987). The bootstrap: to smooth or not to smooth?. Biometrika, 74(3), 469-479.
https://doi.org/10.1093/biomet/74.3.469

Hall P., DiCiccio, T. & Romano, J. (1989). On smoothing and the bootstrap. The Annals of Statistics, 2, 692-704.
https://doi.org/10.1214/aos/1176347135

De Angelis, D., & Young, G. A. (1992). Smoothing the bootstrap. International Statistical Review/Revue Internationale de Statistique, 45-56.
https://doi.org/10.2307/1403500

Polansky, A.M. (2001). Bandwidth selection for the smoothed bootstrap percentile method. Computational Statistics and Data Analsysis, 36, 333-349.
https://doi.org/10.1016/S0167-9473(00)00045-1

Karanina, S., Kocheeva, N., Belikova, M., Baranovskiy, N., Analysis of a Thunderstorm Activity According to WWLLN: a Case Study, (2018) International Review of Electrical Engineering (IREE), 13 (1), pp. 69-79.
https://doi.org/10.15866/iree.v13i1.14732

Karanina, S. Y., Kocheeva, N. A., Karanin, A. V., &Belikova, M. Y. (2020). Assessing the Territory According to the Degree of Thunderstorm Danger. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (pp. 122-150). IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0.ch006

Karanina S.Yu., Karanin A.V., Baranovskiy N.V., Kocheeva N.A., Belikova M.Yu. Analysis of lightning discharges activity within the territory of Buryatia in 2010-2016 based on WWLLN data // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 381. Article 012038.
https://doi.org/10.1088/1755-1315/381/1/012038

Jacobson, A. R., R. Holzworth, J. Harlin, R. Dowden, and E. Lay, Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., vol. 23, pp. 1082-1092. (accessed 20.06.2017). Available at:
https://doi.org/10.1175/JTECH1902.1

Dowden, R. L., J. B. Brundell, and C. J. Rodger, VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Solar.-Terr. Phys., 2002, vol. 64, no 7, pp. 817-830. (accessed 22.05.2017). Available at:
https://doi.org/10.1016/S1364-6826(02)00085-8

Hutchins, M. L., R. H. Holzworth, J. B. Brundell, and C. J. Rodger, Relative detection efficiency of the World Wide Lightning Location Network, Radio Science, 2012, vol. 47, no RS6005.
https://doi.org/10.1029/2012RS005049

Abarca S. F., Kristen L., Corbosiero 1., Thomas J., Galarneau Jr. (2010). Anevaluation of the Worldwide Lightning Location Network (WWLLN) using the NationalLightning Detection Network (NLDN) as ground truth // Journal of Geophysical Research.V. 115, d18206.
https://doi.org/10.1029/2009JD013411

Mikhailova G.A., Mikhailov Yu.M., Osin A.I., Kapustina O.V. (2007). Implementation of the method of localizing lightning in the global network of stations by the time of packet arrival in the VLF range (TOGA) at the IZMIRAN receiving point / Proceedings of the VII All-Russian Conference on Atmospheric Electricity. - Nizhny Novgorod. Institute of Applied Physics RAS. S. 253-254.

Discover QGIS (accessed on May 03, 2021).
Available online: https://www.qgis.org/en/site/about/index.html

GRASS GIS. (Accessed 03 May 2021).
Available: https://grass.osgeo.org/


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize