Open Access Open Access  Restricted Access Subscription or Fee Access

Design and Analysis of Renewable Energy Microgrids for Operations in Different Latitudes by Applying Fuzzy Logic Modeling

María Fernanda Boada Medina(1), Karen Tatiana Prieto(2), Fredy Mesa(3*), Andres Julian Aristizabal(4)

(1) Engineering Department, Universidad de Bogota Jorge Tadeo Lozano, Colombia
(2) Engineering Department, Universidad de Bogota Jorge Tadeo Lozano, Colombia
(3) Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Colombia
(4) Engineering Department, Universidad de Bogota Jorge Tadeo Lozano, Colombia
(*) Corresponding author


DOI: https://doi.org/10.15866/irea.v10i1.20386

Abstract


The modeling results presented in this work used fuzzy logic techniques to design renewable energy microgrids for operation in six cities worldwide: Dwarka, India; Shanghai, China; Milwaukee, United States; Rostock, Germany; Copenhagen, Denmark, and Kamaishi, Japan. A meticulous study on solar photovoltaic, wind potential, power demand, and population density was executed as part of this study. The results reveal that for a microgrids operative scenario comprising 50% photovoltaic solar energy and 50% wind power energy, the amount of energy that must be supplied to the six cities varies from 17,031.46 to 160,971.25 kWh/month, and the number of photovoltaic panels varies between 126 and 6,444. The number of wind turbines required varies between 3 and 11. The most significant amount of photovoltaic solar energy (546,366.41 kWh/month) generated from the microgrids was reported in Rostock, Germany. The most significant amount of generated wind power energy (277,012.15 kWh/month) was reported in Milwaukee, United States. Environmental assessments revealed that the highest amount of reduction in CO2 emission (217.88 tonnes) was obtained from the Rostock (Germany) microgrid. The implementation of such microgrids costs ~US$ 3,903,724.
Copyright © 2022 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.

Keywords


Microgrids; Photovoltaic Energy; Wind Energy; Renewables; Batteries

Full Text:

PDF


References


Y. Du et al., A cooperative game approach for coordinating multi-microgrid operation within distribution systems, Applied Energy, vol. 222, pp. 383-395, Jul. 2018.
https://doi.org/10.1016/j.apenergy.2018.03.086

J. Hu, Y. Xu, K. W. Cheng, and J. M. Guerrero, A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions, Applied Energy, vol. 221, pp. 195-203, Jul. 2018.
https://doi.org/10.1016/j.apenergy.2018.03.085

V. Bhattacharjee and I. Khan, A non-linear convex cost model for economic dispatch in microgrids, Applied Energy, vol. 222, pp. 637-648, Jul. 2018.
https://doi.org/10.1016/j.apenergy.2018.04.001

I. Zafeiratou, I. Prodan, L. Lefèvre, and L. Piétrac, Dynamical modelling of a DC microgrid using a port-Hamiltonian formalism, IFAC-PapersOnLine, vol. 51, no. 2, pp. 469-474, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.03.079

Y. Zhang, F. Meng, R. Wang, W. Zhu, and X.-J. Zeng, A stochastic MPC based approach to integrated energy management in microgrids, Sustainable Cities and Society, vol. 41, pp. 349-362, Aug. 2018.
https://doi.org/10.1016/j.scs.2018.05.044

N. J. Williams, P. Jaramillo, and J. Taneja, An investment risk assessment of microgrid utilities for rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda, Energy for Sustainable Development, vol. 42, pp. 87-96, Feb. 2018.
https://doi.org/10.1016/j.esd.2017.09.012

R. C. Matthews, W. W. Weaver, R. D. Robinett, and D. G. Wilson, Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters, International Journal of Electrical Power & Energy Systems, vol. 98, pp. 315-322, Jun. 2018.
https://doi.org/10.1016/j.ijepes.2017.11.041

Q. Kong, M. Fowler, E. Entchev, and H. Ribberink, Impact assessment of microgrid implementation considering complementary building operation: An Ontario, Canada case, Energy Conversion and Management, vol. 168, pp. 564-575, Jul. 2018.
https://doi.org/10.1016/j.enconman.2018.05.033

B. Aluisio, M. Dicorato, G. Forte, G. Litrico, and M. Trovato, Integration of heat production and thermal comfort models in microgrid operation planning, Sustainable Energy, Grids and Networks, vol. 16, pp. 37-54, Dec. 2018.
https://doi.org/10.1016/j.segan.2018.05.004

B. Domenech, M. Ranaboldo, L. Ferrer-Martí, R. Pastor, and D. Flynn, Local and regional microgrid models to optimise the design of isolated electrification projects, Renewable Energy, vol. 119, pp. 795-808, Apr. 2018.
https://doi.org/10.1016/j.renene.2017.10.060

E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, Microgrid clustering architectures, Applied Energy, vol. 212, pp. 340-361, Feb. 2018.
https://doi.org/10.1016/j.apenergy.2017.12.048

F. Guzzi, D. Neves, and C. A. Silva, Integration of smart grid mechanisms on microgrids energy modelling, Energy, vol. 129, pp. 321-330, Jun. 2017.
https://doi.org/10.1016/j.energy.2017.04.084

M. F. Zia, E. Elbouchikhi, and M. Benbouzid, Microgrids energy management systems: A critical review on methods, solutions, and prospects, Applied Energy, vol. 222, pp. 1033-1055, Jul. 2018.
https://doi.org/10.1016/j.apenergy.2018.04.103

A. Alzahrani, M. Ferdowsi, P. Shamsi, and C. H. Dagli, Modeling and Simulation of Microgrid, Procedia Computer Science, vol. 114, pp. 392-400, Jan. 2017.
https://doi.org/10.1016/j.procs.2017.09.053

B. Hammer, K. Gong, and U. Konigorski, Modeling and control of inverter-based microgrids, IFAC-PapersOnLine, vol. 51, no. 2, pp. 19-24, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.03.004

J. Kitson et al., Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities, Energy, vol. 160, pp. 142-153, Oct. 2018.
https://doi.org/10.1016/j.energy.2018.06.219

L. Zhu and D. J. Hill, Modeling and Stability of Microgrids with Smart Loads, IFAC-PapersOnLine, vol. 50, no. 1, pp. 10021-10026, Jul. 2017.
https://doi.org/10.1016/j.ifacol.2017.08.2037

M. Ilić, R. Jaddivada, and X. Miao, Modeling and analysis methods for assessing stability of microgrids, IFAC-PapersOnLine, vol. 50, no. 1, pp. 5448-5455, Jul. 2017.
https://doi.org/10.1016/j.ifacol.2017.08.1081

S. Boudoudouh and M. Maâroufi, Multi agent system solution to microgrid implementation, Sustainable Cities and Society, vol. 39, pp. 252-261, May 2018.
https://doi.org/10.1016/j.scs.2018.02.020

Y.-Y. Hong, W.-C. Chang, Y.-R. Chang, Y.-D. Lee, and D.-C. Ouyang, Optimal sizing of renewable energy generations in a community microgrid using Markov model, Energy, vol. 135, pp. 68-74, Sep. 2017.
https://doi.org/10.1016/j.energy.2017.06.098

J. Wasilewski, Optimisation of multicarrier microgrid layout using selected metaheuristics, International Journal of Electrical Power & Energy Systems, vol. 99, pp. 246-260, Jul. 2018.
https://doi.org/10.1016/j.ijepes.2018.01.022

A. Albaker, A. Majzoobi, G. Zhao, J. Zhang, and A. Khodaei, Privacy-preserving optimal scheduling of integrated microgrids, Electric Power Systems Research, vol. 163, pp. 164-173, Oct. 2018.
https://doi.org/10.1016/j.epsr.2018.06.007

M. C. Magro, M. Giannettoni, P. Pinceti, and M. Vanti, Real time simulator for microgrids, Electric Power Systems Research, vol. 160, pp. 381-396, Jul. 2018.
https://doi.org/10.1016/j.epsr.2018.03.018

M. H. Shams, M. Shahabi, and M. E. Khodayar, Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response, Energy, vol. 155, pp. 326-338, Jul. 2018.
https://doi.org/10.1016/j.energy.2018.04.190

G. Prinsloo, R. Dobson, and A. Mammoli, Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles, Energy, vol. 147, pp. 263-278, Mar. 2018.
https://doi.org/10.1016/j.energy.2018.01.056

H. Abdi, S. D. Beigvand, and M. L. Scala, A review of optimal power flow studies applied to smart grids and microgrids, Renewable and Sustainable Energy Reviews, vol. 71, pp. 742-766, May 2017, doi: 10.1016/j.rser.2016.12.102.
https://doi.org/10.1016/j.rser.2016.12.102

A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, and M. Benghanem, A survey on control of electric power distributed generation systems for microgrid applications, Renewable and Sustainable Energy Reviews, vol. 44, pp. 751-766, Apr. 2015.
https://doi.org/10.1016/j.rser.2015.01.016

M. Mahmoodi, P. Shamsi, and B. Fahimi, Economic Dispatch of a Hybrid Microgrid With Distributed Energy Storage, IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2607-2614, Nov. 2015.
https://doi.org/10.1109/TSG.2014.2384031

A. H. Fathima and K. Palanisamy, Optimization in microgrids with hybrid energy systems - A review, Renewable and Sustainable Energy Reviews, vol. 45, pp. 431-446, May 2015.
https://doi.org/10.1016/j.rser.2015.01.059

N. W. A. Lidula and A. D. Rajapakse, Microgrids research: A review of experimental microgrids and test systems, Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 186-202, Jan. 2011.
https://doi.org/10.1016/j.rser.2010.09.041

J. Hare, X. Shi, S. Gupta, and A. Bazzi, Fault diagnostics in smart micro-grids: A survey, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1114-1124, Jul. 2016.
https://doi.org/10.1016/j.rser.2016.01.122

L. Zhang, N. Gari, and L. V. Hmurcik, Energy management in a microgrid with distributed energy resources, Energy Conversion and Management, vol. 78, pp. 297-305, Feb. 2014.
https://doi.org/10.1016/j.enconman.2013.10.065

I. L. R. Gomes, R. Melicio, and V. M. F. Mendes, A novel microgrid support management system based on stochastic mixed-integer linear programming, Energy, vol. 223, p. 120030, May 2021.
https://doi.org/10.1016/j.energy.2021.120030

H. Qian, Q. Xu, Y. Xia, P. Du, and J. Zhao, Control and synchronization of a fixed-frequency control method in microgrid based on global positioning system, Energy Reports, vol. 6, pp. 978-984, Dec. 2020.
https://doi.org/10.1016/j.egyr.2020.11.089

M. Adly and K. Strunz, DC microgrid small-signal stability and control: Sufficient stability criterion and stabilizer design, Sustainable Energy, Grids and Networks, vol. 26, p. 100435, Jun. 2021.
https://doi.org/10.1016/j.segan.2021.100435

J. Wang, A. Pratt, K. Prabakar, B. Miller, and M. Symko-Davies, Development of an integrated platform for hardware-in-the-loop evaluation of microgrids prior to site commissioning, Applied Energy, vol. 290, p. 116755, May 2021.
https://doi.org/10.1016/j.apenergy.2021.116755

Y. Li, J. Yang, H. Wang, J. Cui, Y. Ma, and S. Huang, Dynamic equivalent modeling for microgrid based on GRU, Energy Reports, vol. 6, pp. 1291-1297, Dec. 2020.
https://doi.org/10.1016/j.egyr.2020.11.041

H. Xu, Z. Meng, and Y. Wang, Economic dispatching of microgrid considering renewable energy uncertainty and demand side response, Energy Reports, vol. 6, pp. 196-204, Dec. 2020.
https://doi.org/10.1016/j.egyr.2020.11.261

M. A. Aftab, S. M. S. Hussain, A. Latif, D. C. Das, and T. S. Ustun, IEC 61850 communication based dual stage load frequency controller for isolated hybrid microgrid, International Journal of Electrical Power & Energy Systems, vol. 130, p. 106909, Sep. 2021.
https://doi.org/10.1016/j.ijepes.2021.106909

K. N. Dharmalingam et al., Investigation on microgrid control for grid tied PV battery system incorporating sustainable manufacturing technology, Materials Today: Proceedings, Oct. 2020.
https://doi.org/10.1016/j.matpr.2020.09.273

S. Lenhart and K. Araújo, Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles, Renewable and Sustainable Energy Reviews, vol. 139, no. C, 2021, Accessed: Mar. 10, 2021.
https://doi.org/10.1016/j.rser.2020.110692

A. Ouammi, Peak load reduction with a solar PV-based smart microgrid and vehicle-to-building (V2B) concept, Sustainable Energy Technologies and Assessments, vol. 44, p. 101027, Apr. 2021.
https://doi.org/10.1016/j.seta.2021.101027

M. Restrepo, C. A. Cañizares, J. W. Simpson-Porco, P. Su, and J. Taruc, Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility, Applied Energy, vol. 290, p. 116760, May 2021.
https://doi.org/10.1016/j.apenergy.2021.116760

A. Chandra, G. K. Singh, and V. Pant, Protection of AC microgrid integrated with renewable energy sources - A research review and future trends, Electric Power Systems Research, vol. 193, p. 107036, Apr. 2021.
https://doi.org/10.1016/j.epsr.2021.107036

J. Yang and C. Su, Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty, Energy, vol. 223, p. 120043, May 2021.
https://doi.org/10.1016/j.energy.2021.120043

J. Nelson, N. G. Johnson, K. Fahy, and T. A. Hansen, Statistical development of microgrid resilience during islanding operations, Applied Energy, vol. 279, p. 115724, Dec. 2020.
https://doi.org/10.1016/j.apenergy.2020.115724

Y.-M. Wang and K.-S. Chin, Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology, International Journal of Approximate Reasoning, vol. 52, no. 4, pp. 541-553, Jun. 2011.
https://doi.org/10.1016/j.ijar.2010.12.004

A. J. Aristizábal, D. H. Ospina, M. Castañeda, S. Zapata, and E. Banguero, Fuzzy logic energy management for a microgrid with storage battery, International Journal of Ambient Energy, vol. 41, no. 10, pp. 1183-1191, Aug. 2020.
https://doi.org/10.1080/01430750.2018.1507931

G. van de Kaa, J. Rezaei, L. Kamp, and A. de Winter, Photovoltaic technology selection: A fuzzy MCDM approach, Renewable and Sustainable Energy Reviews, vol. 32, pp. 662-670, Apr. 2014.
https://doi.org/10.1016/j.rser.2014.01.044

A. Tomilson, J. Quaicoe, R. Gosine, M. Hinchey, and N. Bose, Modelling an autonomous wind-diesel system using SIMULINK, in CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery.
Conference Proceedings, May 1997, vol. 1, pp. 35-38 vol.1.

B. Belvedere, M. Bianchi, A. Borghetti, C. A. Nucci, M. Paolone, and A. Peretto, A Microcontroller-Based Power Management System for Standalone Microgrids With Hybrid Power Supply, IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 422-431, Jul. 2012.
https://doi.org/10.1109/TSTE.2012.2188654

D. Rekioua, Wind Energy Conversion and Power Electronics Modeling, in Wind Power Electric Systems: Modeling, Simulation and Control, D. Rekioua, Ed. London: Springer, 2014, pp. 51-76.
https://doi.org/10.1007/978-1-4471-6425-8_2

M. Bechouat, Y. Soufi, M. Sedraoui, and S. Kahla, Energy storage based on maximum power point tracking in photovoltaic systems: A comparison between GAs and PSO approaches, International Journal of Hydrogen Energy, vol. 40, no. 39, pp. 13737-13748, Oct. 2015.
https://doi.org/10.1016/j.ijhydene.2015.05.008

H. Fathabadi, Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and harmonic considerations, Energy Conversion and Management, vol. 103, pp. 573-584, Oct. 2015.
https://doi.org/10.1016/j.enconman.2015.07.010

A. Rezvani, A. Khalili, A. Mazareie, and M. Gandomkar, Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method, ISA Transactions, vol. 63, pp. 448-460, Jul. 2016.
https://doi.org/10.1016/j.isatra.2016.02.013

Ren21 2018. https://www.ren21.net/gsr-2018/

NASA. https://power.larc.nasa.gov/data-access-viewer/

Download the World Factbook - Central Intelligence Agency. (accessed Sep. 03, 2020).
https://www.cia.gov/library/publications/download

United Nations Population Division | Department of Economic and Social Affairs. (accessed Sep. 03, 2020).
https://www.un.org/en/development/desa/population/index.asp

Shangai Population. (accessed Sep. 03, 2020).
http://poblacion.population.city/china/shanghai/

Chinese society in data - Present Stories from China, Feb. 19, 2017. (accessed Sep. 03, 2020).
https://www.historiasdechina.com/2017/02/19/la-sociedad-china-en-datos/

Milwaukee • Population. (accessed Sep. 03, 2020).
http://poblacion.population.city/estados-unidos/milwaukee/

U.S. Census Bureau QuickFacts: United States. (accessed Sep. 03, 2020).
https://www.census.gov/quickfacts/fact/table/US/PST045219

Rostock | UBC.net. (accessed Sep. 03, 2020).
https://www.ubc.net/cities/rostock

Reach the german consumer-Santandertrade.com.(accessed Sep. 03, 2020).
https://santandertrade.com/es/portal/analizar-mercados/alemania/llegar-al-consumidor

Dwarka, Mapcarta. (accessed Sep. 03, 2020).
https://mapcarta.com/es/Dwarka

Reach the indian consumer - Santandertrade.com. (accessed Sep. 03, 2020).
https://santandertrade.com/es/portal/analizar-mercados/india/llegar-al-consumidor

Kamaishi (Iwate , Japan) - Population Statistics, Charts, Map, Location, Weather and Web Information. (accessed Sep. 03, 2020).
https://www.citypopulation.de/php/japan-iwate.php?cityid=03211

Statistical Handbook of Japan 2018, p. 210.

UNdata | record view | City population by sex, city and city type. (accessed Sep. 03, 2020).
http://data.un.org/Data.aspx?d=POP&f=tableCode%3a240

The average Dane. (accessed Sep. 03, 2020).
https://www.dst.dk/en/Statistik/Publikationer/gennemsnitsdanskeren

High Efficiency 500w 48v Solar Panel Monocrystalline - Buy 500w Panel Solar,500w 48v Solar Panel Monocrystalline, Solar Module 500w Product on Alibaba.com. (accessed Sep. 04, 2020).
https://www.alibaba.com/product-detail/high-efficiency-500w-48v-solar-panel_62358163746.html?spm=a2700.7724838.2017115.173.1d2b17bfcp857o&s=p

Bonus-120 zu verkaufen on wind-turbine.com. (accessed Sep. 04, 2020).
https://en.wind-turbine.com/wind-turbines/84366/bonus-120-zu-verkaufen.html?utm_source=wind-turbine-models&utm_medium=cpc&utm_campaign=offers

S. S. T. AG, SUNNY TRIPOWER 60 Japan. (accessed Sep. 04, 2020).
https://www.sma.de/en/products/solarinverters/sunny-tripower-60-japan.html


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize