Open Access Open Access  Restricted Access Subscription or Fee Access

Forest Mapping Using Classification of Sentinel-2A Imagery for Forest Fire Danger Prediction: a Case Study

Elena Petrovna Yankovich(1), Ksenia Stanislavovna Yankovich(2), Nikolay Viktorovich Baranovskiy(3*)

(1) National Research Tomsk Polytechnic University, Russian Federation
(2) University of Paris 7 (Paris Diderot University), France
(3) National Research Tomsk Polytechnic University, Russian Federation
(*) Corresponding author


DOI: https://doi.org/10.15866/irea.v9i3.20209

Abstract


Timely and accurate effective forest cover mapping is a prerequisite for predicting forest fire danger. Remote sensing data have an undoubted advantage in mapping the forest cover of territories. The paper compares six trained classification algorithms in order to select the best Sentinel 2A image for a typical forestry in the Baikal region. The conducted comparative analysis has included comparison of the classification accuracy by parametric and nonparametric methods with the default parameters set in the ENVI software. The training sample (Samples data) has been created based on forest management materials. The overall accuracy and the Cohen's kappa coefficient have been used to assess general performance of each algorithm. The accuracy of mapping individual vegetation classes has been assessed using the accuracy of the producer and the user and their combination of F-score. The results of the study can be used when choosing a method for classifying forest vegetation in the Baikal zone and other similar areas by satellite imagery in order to predict forest fire danger.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Forest Mapping; Classification; Sentinel 2; Minimum Distance; Maximum Likelihood Classification; Spectral Angle Mapper Classification; Spectral Information Divergence; Support Vector Machines; Neural Network

Full Text:

PDF


References


Badmaev, N.B.; Bazarov, A.V.; Sychev, R.S. Forest Fire Danger Assessment Using Meteorological Trends. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks 2020, 183–208.
https://doi.org/10.4018/978-1-7998-1867-0.ch008

Karanina, S.Y.; Kocheeva, N.A.; Karanin, A.V.; Belikova, M.Y. Assessing the Territory According to the Degree of Thunderstorm Danger. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks 2020, 122–150.
https://doi.org/10.4018/978-1-7998-1867-0.ch006

Baranovskiy, N.V. Mathematical Simulation of Anthropogenic Load on Forested Territories for Point Source. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks 2020, 64–88.
https://doi.org/10.4018/978-1-7998-1867-0.ch003

Yankovich, E.P.; Yankovich, K.S. Classification of Territory on Forest Fire Danger Level Using GIS and Remote Sensing. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks 2020, 258–267.
https://doi.org/10.4018/978-1-7998-1867-0.ch011


Canadian Wildland Fire Information System (accessed on Jul 1, 2020).
Available online: https://cwfis.cfs.nrcan.gc.ca/home

The Wildland Fire Assesment System (WFAS) (accessed on Jul 3, 2020).
Available online: http://www.wfas.net/

EFFIS-Welcome to EFFIS (accessed on Jul 3, 2020).
Available online: https://effis.jrc.ec.europa.eu/

Podolskaya, A.S.; Ershov, D.V.; Shulyak, P.P. Application of the method for assessing the probability of occurrence of forest fires in ISDM-Rosleskhoz. Modern problems of remote sensing of the Earth from space 2011, 8, 118–126.

Baranovskiy, N.; Kuznetsov, G. Forest fire occurrences and ecological impact prediction. 2017, doi:10.15372/forest2017bnv.
https://doi.org/10.15372/forest2017bnv

Grishin, A.M.; Filkov, A.I. A deterministic-probabilistic system for predicting forest fire hazard. Fire Safety Journal 2011, 46, 56–62.
https://doi.org/10.1016/j.firesaf.2010.09.002

Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J.W. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire 2004, 13, 133,
https://doi.org/10.1071/wf02061

Anderson, K. A model to predict lightning-caused fire occurrences. International Journal Wildland Fire 2002, 11, 163–172.
https://doi.org/10.1071/wf02001

Read, N.; Duff, T.J.; Taylor, P.G. A lightning-caused wildfire ignition forecasting model for operational use. Agricultural and Forest Meteorology 2018, 253–254, 233–246.
https://doi.org/10.1016/j.agrformet.2018.01.037

Nieto, H.; Aguado, I.; García, M.; Chuvieco, E. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agricultural and Forest Meteorology 2012, 162–163, 35–43.
https://doi.org/10.1016/j.agrformet.2012.04.002

Zhang, Y.; Lim, S.; Sharples, J.J. Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomatics, Natural Hazards and Risk 2016, 7, 1800–1815.
https://doi.org/10.1080/19475705.2016.1155501

Al_Janabi, S.; Al_Shourbaji, I.; Salman, M.A. Assessing the suitability of soft computing approaches for forest fires prediction. Applied Computing and Informatics 2018, 14, 214–224.
https://doi.org/10.1016/j.aci.2017.09.006

Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160.
https://doi.org/10.1016/j.catena.2016.11.032

Tien Bui, D.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology 2017, 233, 32–44.
https://doi.org/10.1016/j.agrformet.2016.11.002

Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental And Social Factors Influencing Wildfires In The Upper Midwest, United States. Ecological Applications 2001, 11, 111–127.
https://doi.org/10.1890/1051-0761(2001)011[0111:easfiw]2.0.co;2

Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2012, 36, 27–46.
https://doi.org/10.1111/j.1600-0587.2012.07348.x

Duan, K.; Keerthi, S.S.; Poo, A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003, 51, 41–59.
https://doi.org/10.1016/s0925-2312(02)00601-x

Kurbatskiy, N.P. The problem of forest fires. The emergence of forest fires. Nauka: Moscow, USSR 1964.

Matsenko, V.V.; Sokolov, A.Y.; Kalinin, S.I.; et al. General plan of the anti-fire arrangement of forests. 1999, 1.

Petryaev, V.E.; Hertz, E.F.; Dyachkova, A.A. Forest management in Russia. State forest inventory. Actual problems of the forestry complex. 2015, 40–42.

Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Marcos do Espirito-Santo, M. Monitoring deforestation with MODIS Active Fires in Neotropical dry forests: An analysis of local-scale assessments in Mexico, Brazil and Bolivia. Journal of Arid Environments 2013, 97, 150–159.
https://doi.org/10.1016/j.jaridenv.2013.06.002

Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sensing of Environment 2020, 245, 111839.
https://doi.org/10.1016/j.rse.2020.111839

Li, F.; Zhang, X.; Kondragunta, S.; Schmidt, C.C.; Holmes, C.D. A preliminary evaluation of GOES-16 active fire product using Landsat-8 and VIIRS active fire data, and ground-based prescribed fire records. Remote Sensing of Environment 2020, 237, 111600.
https://doi.org/10.1016/j.rse.2019.111600

Kupková, L.; Červená, L.; Suchá, R.; Jakešová, L.; Zagajewski, B.; Březina, S.; Albrechtová, J. Classification of Tundra Vegetation in the Krkonoše Mts. National Park Using APEX, AISA Dual and Sentinel-2A Data. European Journal of Remote Sensing 2017, 50, 29–46.
https://doi.org/10.1080/22797254.2017.1274573

Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. Journal of Environmental Management 2019, 247, 484–498.
https://doi.org/10.1016/j.jenvman.2019.06.084

Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing 2016, 8, 166.
https://doi.org/10.3390/rs8030166

Topaloğlu, R.H.; Sertel, E.; Musaoğlu, N. Assessment Of Classification Accuracies Of Sentinel-2 And Landsat-8 Data For Land Cover/Use Mapping. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2016, XLI-B8, 1055–1059.
https://doi.org/10.5194/isprsarchives-xli-b8-1055-2016

Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters 2017, 8, 508–517.
https://doi.org/10.1080/2150704x.2017.1295479

Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing 2020, 12, 2291.
https://doi.org/10.3390/rs12142291

Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing 2017, 55, 331–354.
https://doi.org/10.1080/15481603.2017.1370169

Close, O.; Benjamin, B.; Petit, S.; Fripiat, X.; Hallot, E. Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium. Land 2018, 7, 154.
https://doi.org/10.3390/land7040154

Vorobiev, O.N.; Kurbanov, E.A.; Demisheva, E.N.; et al. Remote monitoring of forest ecosystems sustainability. Volga State University of Technology 2019, 166.

Nikitina, A.D.; Knyazeva, S.V.; Gavrilyuk, E.A.; Tikhonova, E.V.; Eydlina, S.P.; Koroleva, N.V. Vegetation cover dynamics mapping of the Curonian Spit National Park usingsatellite imagery Alos and Sentinel-2. Forest Science Issues 2019, 2.
https://doi.org/10.31509/2658-607x-2020-3-1-1-14

Perepechina, Y.I.; Glushenko, O.G.; Korsikov, R.S. Automated Detection of Forest Cover and Forest Characteristics Kolichestvennykh of Municipal Shebekinskiy District of the Belgorod Region on Space. Lesokhozyaystvennaya informatsiya [Forestry information] 2017.

Wittke, S.; Yu, X.; Karjalainen, M.; Hyyppä, J.; Puttonen, E. Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. International Journal of Applied Earth Observation and Geoinformation 2019, 76, 167–178.
https://doi.org/10.1016/j.jag.2018.11.009

Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment 2019, 223, 257–273.
https://doi.org/10.1016/j.rse.2019.01.019

Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing 2014, 6, 964–983.
https://doi.org/10.3390/rs6020964

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. 2008.

Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 130, 2017, Pages 277–293, 0924–2716.
https://doi.org/10.1016/j.isprsjprs.2017.06.001

Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing 2017, 9, 967.
https://doi.org/10.3390/rs9090967

Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing 2018, 39, 2784–2817.
https://doi.org/10.1080/01431161.2018.1433343

Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 2007, 28, 823–870.
https://doi.org/10.1080/01431160600746456

Denux, J.-P.; Cano, E.; Hubert-Moy, L.; Parrens, M.; Chéret, V. Long-term forest mapping from classification of MODIS time series: best practices. Journal of Applied Remote Sensing 2019, 14, 1.
https://doi.org/10.1117/1.jrs.14.022208

Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment 2016, 177, 89–100.
https://doi.org/10.1016/j.rse.2016.02.028

Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18.
https://doi.org/10.3390/s18010018

Gong, P.; Howarth, P.J. An assessment of some factors influencing multispectral land-cover classification. Photogramm. Eng. Remote Sens 1990, 56, 597–603.

Discover QGIS (accessed on Nov 15, 2020).
Available online: https://www.qgis.org/en/site/about/index.html

ENVI - The Leading Geospatial Image Analysis Software (accessed on Jul 1, 2020). Available online:
https://www.l3harrisgeospatial.com/Software-Technology/ENVI

Forestry regulations of the Noginsk forestry

From GIS to Remote Sensing: Semi-Automatic Classification Plugin for QGIS (accessed on Nov 15, 2020). Available online:
https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html

Yankovich, E.P.; Yankovich, K.S.; Baranovskiy, N.V.; Bazarov, A.; Sychev, R.; Badmaev, N. Mapping of vegetation cover using Sentinel-2 to estimate forest fire danger.; SPIE, 2019.
https://doi.org/10.1117/12.2532509

Kuznetsov, G.V.; Baranovskiy, N.V. Focused sun’s rays and forest fire danger: new concept.; Proceedings of SPIE, 2013.

Yankovich, K.S.; Yankovich, E.P.; Baranovskiy, N.V. Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study. Mathematical Problems in Engineering 2019, 2019, 1–14.
https://doi.org/10.1155/2019/6296417

Sentinel Online - ESA (accessed on Jun 28, 2020).

Available online: https://sentinel.esa.int/web/sentinel/

Baranovskii, N.V.; Zakharevich, A.V. Conditions and Characteristics of the Ignition of a Typical Vegetable Combustible Material by a Local Energy Source. Journal of Engineering Physics and Thermophysics 2016, 89, 1538–1544.
https://doi.org/10.1007/s10891-016-1524-3

Baranovskiy, N.V.; Zakharevich, A.V. Experimental Investigation Of Processes Of Typical Forest Fuel Ignition By A High-Temperature Steel Particle. Heat Transfer Research 2016, 47, 681–689.
https://doi.org/10.1615/heattransres.2016010609

Baranovskiy, N., Zakharevich, A., Mechanical, Thermophysical and Aerothermochemical Processes at Forest Fuel Ignition Caused by the Heated to High Temperatures Single Metal Particle, (2018) International Review of Mechanical Engineering (IREME), 12 (6), pp. 522-532.
https://doi.org/10.15866/ireme.v12i6.15065

Baranovskiy, N.V.; Kogan, R.; Glagolev, V.; Zubareva, A. Grassland fire spread simulation using NDVI data.; Proceeding of SPIE, 2017.
https://doi.org/10.1117/12.2286782

Tempfli, K.; Huurneman, G.C.; Bakker, W.H.; Janssen, L.L.F.; Feringa, W.F.; Gieske, A.S.M.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Meer, F.D. van der; et al. Principles of remote sensing : an introductory textbook; Kerle, N., Ed.; International Institute for Geo-Information Science and Earth Observation, 2007;

Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing 2016, 116, 55–72.
https://doi.org/10.1016/j.isprsjprs.2016.03.008

Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 1998, 2, 121–167.

Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning 1995, 20, 273–297.

Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment 1993, 44, 145–163.
https://doi.org/10.1016/0034-4257(93)90013-n

Chang, C.-I. New hyperspectral discrimination measure for spectral characterization. Optical Engineering 2004, 43, 1777.

Joachims, T. Making large-scale support vector machine learning practical. In Advances in kernel methods: support vector learning; MIT Press: Cambridge, MA, USA, 1999; pp. 169–184 ISBN 978-0-262-19416-7.
https://doi.org/10.1016/s0925-2312(01)00684-1

Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment 2013, 129, 122–131.
https://doi.org/10.1016/j.rse.2012.10.031

Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment 2014, 148, 42–57.
https://doi.org/10.1016/j.rse.2014.02.015

Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 1991, 37, 35–46.
https://doi.org/10.1016/0034-4257(91)90048-b

Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data. 2019.

Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment 2007, 107, 606–616.
https://doi.org/10.1016/j.rse.2006.10.010

Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment 2019, 231, 111199.
https://doi.org/10.1016/j.rse.2019.05.018


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize