Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis of Memristive Structures Based on Composite Oxides with Agglomerates of Nanoparticles


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v9i4.19793

Abstract


This study is concerned with the creation of a promising element base for smart systems based on memristive technologies. A review of the methods for the synthesis of memristive structures based on chalcogenides, metal oxides, and polymers is carried out. A method for the synthesis of a memristive structure based on metal oxides (in particular, TiO2 and Al2O3) is proposed. The effect of various combinations of contact material, as well as thicknesses, structure, and location of the film layers constituting the resistive layer on the parameters of the synthesized structure, is analyzed. A solution to one of the main problems of memristive systems in terms of obtaining a stable nanometer structure of element films capable of providing a long-term stable channel in a resistive layer of a memristor with a stable current-voltage characteristic is proposed. In order to obtain a similar effect, films with a homogeneous structure having a stoichiometric composition of the sprayed substances and a minimum level of mechanical stresses are required. These requirements can be obtained using the method of magnetron sputtering. Control over the deposition rate makes it possible to obtain more dense or loose film structures. This fact affects the threshold switching resistance in the resistive channel. The proposed method opens up the prospects of creating miniature memory cells of a new generation with an information volume of about 1000 times that of classical memory elements and an unlimited switching resource.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Memristor; Smart-Systems; Magnetron Sputtering; Nanometer Structure; TiO2 Film; Al2O3 Film

Full Text:

PDF


References


E.A. Lee, Cyber-physical systems - are computing foundations adequate? In: NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap (Austin, TX, 2006).

E.A. Lee, S.A. Seshia, Introduction to embedded systems - a cyber-physical systems approach (MIT Press, 2011).

O.N. Berdyugina, A.I. Krivoshein, A.I. Vlasov, Technological platform for innovative social infrastructure development on basis of smart machines and principles of Internet of things, Proceedings 2018 Global Smart Industry Conference (GloSIC) 2018. No. 8570062. 13-15 Nov., 2018, Chelyabinsk, Russia.

D. A. Whitaker, D. Egan, E. O'Brien, D. Kinnear, Application of multivariate data analysis to machine power measurements as a means of tool life predictive maintenance for reducing product waste; 2018 [accessed 16 March 2020].
https://arxiv.org/abs/1802.08338

P. V. Grigoriev, A. I. Krivoshein, V. A. Shakhnov, S. S. Filin, V. S. Migalin, A. I. Vlasov, Smart management of technologies: predictive maintenance of industrial equipment using wireless sensor networks, Entrepreneurship Sustain Issues, vol. 6, n. 2, 2018, pp. 489 - 502.
https://doi.org/10.9770/jesi.2018.6.2(2)

D. Rath, I. Satpathy, B.C.M. Patnaik, Augmented reality (AR) & virtual reality (VR) - a channel for digital transformation in industrialization fostering innovation & entrepreneurship, IJITEE, vol. 8, n. 10, 2019, pp. 3228 - 3236.
https://doi.org/10.35940/ijitee.J1167.0881019

A. Yudin, M. Kolesnikov, M. Salmina, A. Vlasov, Project oriented approach in educational robotics: from robotic competition to practical appliance, Adv Intel Syst Comput, vol. 457, 2017, pp. 83 - 94.
https://doi.org/10.1007/978-3-319-42975-5_8

D. Che, M. Safran, Z. Peng, From big data to big data mining: Challenges, issues, and opportunities, Lect Notes Comput Sci, vol. 7827, 2013, pp. 1¬ - 15.
https://doi.org/10.1007/978-3-642-40270-8_1

Vlasov, A., Muraviev, K., Prudius, A., Uzenkov, D., Load Balancing in Big Data Processing Systems, (2019) International Review of Automatic Control (IREACO), 12 (1), pp. 42-47.
https://doi.org/10.15866/ireaco.v12i1.16808

M.N. Yuldashev, A.I. Vlasov, A.N. Novikov, Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods, J Phys Conf Ser, vol. 1015, 2018, p. 032153.
https://doi.org/10.1088/1742-6596/1015/3/032153

A.A. Demin, A.I. Vlasov, Visual methods of formalization of knowledge in the conditions of the synchronous technologies of system engineering, ACM International Conference Proceeding Series 13. Ser. "CEE-SECR 2017 - Proceedings of the 13th Central and Eastern European Software Engineering Conference in Russia", No. 3166098, October 20-21, 2017, Saint-Petersburg, Russia.

J. Weissman, Z.L. Zhang, Smart environments: middleware building blocks for pervasive network computing (A position paper), Lect Notes Comput Sci, vol. 2538, 2002, pp. 90 - 105.
https://doi.org/10.1007/3-540-36257-6_9

V.A. Vasilyev, P.S. Chernov, Memristor - perspective component of nanoelectronics, Proceedings of the International Scientific and Technical Conference "INTERMATIC-2012", December 3-7, 2012, Moscow, Russia.

A. Vera-Tasama, M. Gomez-Cano, J.I. Marin-Hurtado, Memristors: A perspective and impact on the electronics industry, Latin American Electron Devices Conference (LAEDC), pp. 1 - 4, 2019, Armenia, Colombia.
https://doi.org/10.1109/LAED.2019.8714735

A. Thomas, Memristor-based neural networks, J Phys D, vol. 46, n. 9, 2013, p. 093001.
https://doi.org/10.1088/0022-3727/46/9/093001

L.O. Chua, Memristor - the missing circuit element, IEEE Trans Circuit Theory, vol. 18, 1971, pp. 507 - 519.
https://doi.org/10.1109/TCT.1971.1083337

D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature, vol. 453, 2008, pp. 80 - 83.
https://doi.org/10.1038/nature06932

R. Marani, G.Gelao, A.G. Perri, A review on memristor applications; 2015 [accessed 4 June 2020].
https://arxiv.org/abs/1506.06899

Y. Ho, G.M. Huang, P. Li, Nonvolatile memristor memory: Device characteristics and de-sign implications, Proceedings of the International Conference on Computer-Aided De-sign; p. 485-90, November 2-5, 2009, USA.

S. Yener, H. Kuntman, A new CMOS based memristor implementation, International Conference on Applied Electronics (AE), 2012, Pilsen, Czech Republic.

M. Sampath, P.S. Mane, C.K. Ramesha, Hybrid CMOS-memristor based FPGA architecture, International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA), p. 1 - 6, 8-10 Jan. 2015, Bangalore, India.
https://doi.org/10.1109/VLSI-SATA.2015.7050461

H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, et al., Ionic doping effect in ZrO2 resistive switching memory, Appl Phys Lett, vol. 96, 2010, p. 123502.
https://doi.org/10.1063/1.3364130

A. Emelyanov, V.A. Demin, I.M. Antropov, G.I. Tselikov, Z.V. Lavrukhina, P.K. Kashkarov, Effect of the thickness of the TiOx/TiO2 layers on their memristor properties, Tech Phys, vol. 60, n. 1, 2015, pp. 112 - 115.
https://doi.org/10.1134/S1063784215010077

R.L.J. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Appl Phys, vol. 97, 2005, p. 121301.
https://doi.org/10.1063/1.1940727

K. Wasa, S. Hayakawa, Handbook of sputter deposition technology (Waltham: Elsevier; 2012).

A. Mehonic, A.J. Kenyon, Resistive switching in oxides, Springer Ser Surf Sci, vol. 58, 2015, pp. 401 - 428.
https://doi.org/10.1007/978-3-319-14367-5_13

Snider G, Amerson R, Carter R, Abdalla H, Qureshi MS, Leveile J et al. From synapses to circuitry: Using memristive memory to explore the electronic brain. Computer 2011;44(2):21-8.
https://doi.org/10.1109/MC.2011.48

A. Gudkov, A. Gogin, M. Kik, A. Kozlov, A. Samus, Memristors - a new type of resistive memory elements for nanoelectronics, Electronics: Science, Technology, Business, vol. 00137, 2014, pp. 156 - 162.

I.V., Dermel K.A. Shashkeev, Peculiarities of magnetron sputtering of metals in the presence of reactive gases, Proc VIAM, vol. 11, 2017, p. 11.
https://doi.org/10.18577/2307-6046-2017-0-11-11-11

V.P. Zhalnin, V.A. Shakhnov, A.I. Vlasov, Methods for improvement of the consistency and durability of the inorganic memristor structures. J Nanotechnol, vol.16, n. 1-3, 2019, pp. 187 - 195.
https://doi.org/10.1504/IJNT.2019.102405

W. Guan, S. Long, R. Jia, M. Liu, Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide, Appl Phys Lett, vol. 91, n. 6, 2007, p. 062111.
https://doi.org/10.1063/1.2760156

O.N. Gorshkov, A.N. Mikhaylov, A.P. Kasatkin, S.V. Tikhov, D.O. Filatov, D.A. Pavlov, et al., Resistive switching in the Au/Zr/ZrO2-Y2O3/TiN/Ti memristive devices deposited by magnetron sputtering, J Phys: Conf Series, vol. 741, 2016, p. 012174.
https://doi.org/10.1088/1742-6596/741/1/012174

I.N. Antonov, O.N. Gorshkov, D.A. Pavlov, M.E. Shenina, A.I. Bobrov, A.P. Kasatkin, et al., The study of thin films of stabilized zirconia with gold nanocrystals formed by the annealing of insular metal films, Abstracts of the Forum of Young Scientists of the NNSU, vol. 1, p. 91 - 93, September 16-18, 2013, N. Novgorod, Russia.

H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides, Proc IEEE, vol. 98, n. 12, 2010, pp. 2237 - 2251.
https://doi.org/10.1109/JPROC.2010.2070830

P.I. Fedorov, Hydrated oxides of elements of groups IV and V (Moscow, Mir, 1986).

G.Y. Jung, Fabrication of a 34x34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography, Nano Lett, vol. 4, 2004, pp. 1225 - 1229.
https://doi.org/10.1021/nl049487q

J.L. Murray, H.A. Wriedt, The O-Ti system, Bull Alloy Phase Diagr, vol. 8, n. 2, 1987, pp. 89 - 93.
https://doi.org/10.1007/BF02873201

L.G. Khazin, Titanium dioxide (Moscow, Vysshaya shkola, 1970).

K.A. Nasyrov, V.A. Gritsenko, Transport mechanisms of electrons and holes in dielectric films, Phys Usp, vol. 183, n. 10, 2013, p. 1099.
https://doi.org/10.3367/UFNr.0183.201310h.1099

M. Pollak, B. Shklovskii (eds), Hopping transport in solids (North-Holland, 1991).

B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors (Berlin, Springer-Verlag, 1984).
https://doi.org/10.1007/978-3-662-02403-4

Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits, European Journal of Physics, vol. 30, 2009, pp. 661-675.
https://doi.org/10.1088/0143-0807/30/4/001


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize