Open Access Open Access  Restricted Access Subscription or Fee Access

Rainfall Induced Landslide Monitoring System


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v9i1.19543

Abstract


Landslides are one of the natural or construction-triggered events that often occur throughout the world. These events cannot be eliminated but the effects like deaths or injuries, monetary losses, economic disruption, and so on, can be minimized. Early warning systems for landslide majorly rely on sensor nodes that evaluate geological and geotechnical soil characterization. In order to monitor the changes, smart sensors, fast computing units are required but nowadays merging with the internet of things technology, the system will store useful data in the cloud. Internet of things is already recognized as the next revolutionary technology that connects devices and makes the system smarter. Physical quality generating data and these systems are designed to monitor and send further to the cloud to make an adequate application. Accelerometers are used to monitor mass movements, moreover low cost, and low power customized AVR microcontroller with a Wi-Fi board designed to store data in the cloud. Internet of Things based customized board does not require much space for installation. This paper presents a novel design equipped with four tri-axial sensors, a power supply, and a wireless communication unit.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Internet of Things; Accelerometer; Landslide Monitoring; Wireless Sensor Network; Wi-Fi; ESP8266; Rainfall Triggered

Full Text:

PDF


References


Phengsuwan, J., Shah, T., James, P., Thakker, D., Barr, S., & Ranjan, R. (2020). Ontology-based discovery of time-series data sources for landslide early warning system. Computing, Volume 102(3), Pages 745-763.
https://doi.org/10.1007/s00607-019-00730-7

Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2017). Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve Bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, Volume 128 n. (1-2), Pages 255-273.
https://doi.org/10.1007/s00704-015-1702-9

Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. Engineering Geology, Volume 147, Pages 124-136.
https://doi.org/10.1016/j.enggeo.2012.07.017

Ju, N. P., Huang, J., Huang, R. Q., He, C. Y., & Li, Y. R. (2015). A Real-time monitoring and early warning system for landslides in Southwest China. Journal of mountain science, Volume 12(5), Pages 1219-1228.
https://doi.org/10.1007/s11629-014-3307-7

Kumar, S., Rangan, P. V., & Ramesh, M. V. (2016, October). Pilot deployment of early warning system for landslides in Eastern Himalayas: Poster. In Proceedings of the Tenth ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characterization (pp. 97-99).
https://doi.org/10.1145/2980159.2980177

Yuliza, E., Habil, H., Munir, M. M., Irsyam, M., Abdullah, M., & Khairurrijal. (2016, August). Study of soil moisture sensor for landslide early warning system: Experiment in laboratory scale. In Journal of Physics: Conference Series (Vol. 739, p. 012034).
https://doi.org/10.1088/1742-6596/739/1/012034

Arnhardt, C., Asch, K., Azzam, R., Bill, R., Fernandez-Steeger, T. M., Homfeld, S. D., & Walter, K. (2007). Sensor-based Landslide Early Warning System-SLEWS. Development of a geoservice infrastructure as the basis for early warning systems for landslides by integration of real-time sensors. Geotechnologien science report, Volume 10, Pages 75-88.

Piciullo, L., Gariano, S. L., Melillo, M., Brunetti, M. T., Peruccacci, S., Guzzetti, F., & Calvello, M. (2017). Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides, Volume 14(3), Pages 995-1008.
https://doi.org/10.1007/s10346-016-0750-2

Pecoraro, G., Calvello, M., & Piciullo, L. (2019). Monitoring strategies for local landslide early warning systems. Landslides, Volume 16 (2), Pages 213-231.
https://doi.org/10.1007/s10346-018-1068-z

Naidu, S., Sajinkumar, K. S., Oommen, T., Anuja, V. J., Samuel, R. A., & Muraleedharan, C. (2018). Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geoscience Frontiers, Volume 9(6), Pages 1871-1882.
https://doi.org/10.1016/j.gsf.2017.10.008

Arbanas, Ž., Sassa, K., Nagai, O., Jagodnik, V., Vivoda, M., Jovančević, S. D., & Ljutić, K. (2014). A landslide monitoring and early warning system using integration of GPS, TPS, and conventional geotechnical monitoring methods. In Landslide Science for a Safer Geoenvironment (pp. 631-636). Springer, Cham.
https://doi.org/10.1007/978-3-319-05050-8_98

Dikshit, A., Satyam, D. N., & Towhata, I. (2018). Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Natural Hazards, Volume 94(2), Pages 727-741.
https://doi.org/10.1007/s11069-018-3417-6

Giorgetti, A., Lucchi, M., Tavelli, E., Barla, M., Gigli, G., Casagli, N., ... & Dardari, D. (2016). A robust wireless sensor network for landslide risk analysis: system design, deployment, and field testing. IEEE Sensors Journal, Volume 16(16), Pages 6374-6386.
https://doi.org/10.1109/jsen.2016.2579263

El Moulat, M., Debauche, O., Mahmoudi, S., Brahim, L. A., Manneback, P., & Lebeau, F. (2018). Monitoring system using Internet of Things for potential landslides. Procedia Computer Science, Volume 134, Pages 26-34.
https://doi.org/10.1016/j.procs.2018.07.140

Honghui, W., Xianguo, T., Yan, L., Qi, L., Donglin, N., Lingyu, M., & Jiaxin, Y. (2017). Research of the hardware architecture of the geohazards monitoring and early warning system based on the IoT. Procedia Computer Science, Volume 107, Pages 111-116.
https://doi.org/10.1016/j.procs.2017.03.065

Yang, Y., Song, S., Yue, F., He, W., Shao, W., Zhao, K., & Nie, W. (2019). Superpixel-based automatic image recognition for landslide deformation areas. Engineering Geology, Volume 259, 105166.
https://doi.org/10.1016/j.enggeo.2019.105166

Ooi, G. L., Tan, P. S., Lin, M. L., Wang, K. L., Zhang, Q., & Wang, Y. H. (2016). Near real-time landslide monitoring with the smart soil particles. Japanese Geotechnical Society Special Publication, Volume 2(28), Pages 1031-1034.
https://doi.org/10.3208/jgssp.hkg-05

Kanungo, D. P. (2019). Ground Based Real-Time Monitoring System Using Wireless Instrumentation for Landslide Prediction. In Landslides: Theory, Practice and Modelling (Pages 105-120). Springer, Cham.
https://doi.org/10.1007/978-3-319-77377-3_6

Kebaili, M. O., Foughali, K., FathAllah, K., Frihida, A., Ezzeddine, T., & Claramunt, C. (2016). Landsliding early warning prototype using MongoDB and Web of Things technologies. Procedia Computer Science, Volume 98, Pages 578-583.
https://doi.org/10.1016/j.procs.2016.09.090

Sinarta, I., Rifa’i, A., Fathani, T., Wilopo, W., Spatial Analysis of Safety Factors due to Rain Infiltration in the Buyan-Beratan Ancient Mountains, (2020) International Review of Civil Engineering (IRECE), 11 (2), pp. 90-97.
https://doi.org/10.15866/irece.v11i2.17668

Tran, D. T., Nguyen, D. C., Tran, D. N., & Ta, D. T. (2015). Development of a rainfall-triggered landslide system using wireless accelerometer network. International Journal of Advancements in Computing Technology, Volume 7(5), 14.

Al Hadidi, M., Al-Azzeh, J., Tkalich, O., Odarchenko, R., Gnatyuk, S., Khokhlachova, Y., ZigBee, Bluetooth and Wi-Fi Complex Wireless Networks Performance Increasing, (2017) International Journal on Communications Antenna and Propagation (IRECAP), 7 (1), pp. 48-56.
https://doi.org/10.15866/irecap.v7i1.10911

Bani Yassein, M., Al Balas, F., Odeh, A., Energy-Aware Objective Function for Routing Protocol in Internet of Things, (2017) International Journal on Communications Antenna and Propagation (IRECAP), 7 (3), pp. 188-197.
https://doi.org/10.15866/irecap.v7i3.11741

Lee, H. C., Banerjee, A., Fang, Y. M., Lee, B. J., & King, C. T. (2010). Design of a multifunctional wireless sensor for in-situ monitoring of debris flows. IEEE Transactions on Instrumentation and Measurement, Volume 59(11), Pages 2958-2967.
https://doi.org/10.1109/tim.2010.2046361

Ju, N. P., Huang, J., Huang, R. Q., He, C. Y., & Li, Y. R. (2015). A Real-time monitoring and early warning system for landslides in Southwest China. Journal of Mountain Science, Volume 12(5), Pages 1219-1228.
https://doi.org/10.1007/s11629-014-3307-7

Bani Yassein, M., Al-Jarrah, H., Alma’aitah, A., Performance Evaluation of the Objective Functions for Low-Power and Lossy Networks in the Light Density Network Used in Media Technology for the Internet of Things, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (6), pp. 386-392.
https://doi.org/10.15866/irecap.v10i6.19758

Jimenez, M., Medina, A., Navarro, L., Osorio, A., Robles, D., Calle, M., Candelo-Becerra, J., Obstacles, Speed and Spreading Factor: Insights in LoRa Mobile Performance, (2019) International Journal on Communications Antenna and Propagation (IRECAP), 9 (3), pp. 228-235.
https://doi.org/10.15866/irecap.v9i3.17296

Daraghma, R., A Comparative Study of Wireless Sensor Network Using Cooperative Protocol, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (3), pp. 199-205.
https://doi.org/10.15866/irecap.v10i3.18834


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize