Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling of the Impact of the Geometric Shape of a Solar Dryer on Heat Energy for Different Region in Morocco


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irea.v9i2.19180

Abstract


Solar drying is an economical and environmentally friendly method for drying agricultural products. A new auxiliary heating technique has been proposed and has been studied using an electric fan coil unit, in order to improve the thermal performance of a direct solar dryer. Electrical energy is also used in the auxiliary heating in order to accelerate the drying process and facilitate drying during hours without sun and on cold days. This study presents the mathematical modeling and the numerical simulation of the direct solar dryer with emergency auxiliary heating for three Moroccan sites: Rabat (latitude 34°00’ N), Tetouan (latitude 35°34'N), and Fez (latitude 34°02'N). Two parameters have been chosen for this study: the response of the dryer equipped with a backup heating system to the climatic specificity of the site, and the size of its volume. The results show that the coldest month of the year 2016 in Rabat is the month of February where the minimum temperature recorded is 8 °C. For Tetouan, the minimum temperature recorded during the month of February is 9 °C, while for Fez, the coldest month is January where the minimum temperature recorded is 6 °C. The QX start-up heating powers are different from one site to another. Thus, for an extreme set temperature of 30 °C, the minimum power required is 304.9 W m-3 for Rabat, 337.2 W m-3 for Tetouan and 381.0 W m-3 for Fez.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Direct Solar Dryer; Solar Radiation; Solar Transmittance Temperatures; Heating Systems

Full Text:

PDF


References


W. Allouche, M. Lghabi, B.Benali, A. El Kholti, Solar energy in Morocco promotes health and safety, Archives des Maladies Professionnelles et de l'Environnement, volume 79, Issue 3, May 2018, pp. 415-416.
https://doi.org/10.1016/j.admp.2018.03.465

Y. B. Chauhan, A comprehensive review on solar dryer, International Journal of Ambient Energy, March 2018.

A. Menon, V. Stojceska, S. A. Tassou, A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies, Trends in Food Science & Technology, vol. 100, June 2020, pp. 67-76.
https://doi.org/10.1016/j.tifs.2020.03.014

H. Samrani, A. Khyad, M.N. Bargach, R. Tadili, A. Mcheqrane, Energetic behavior study of a direct solar dryer under different climate in Morocco, International Journal of Renewable Energy, Vol. 10 n. 2, July 2015, pp. 1-17.

H. Samrani, A. Ourhedja, M.N. Bargach, R. Tadili, K. Kabidi, A. Mcheqrane, Numerical modeling of the thermal behavior of a direct solar dryer with auxiliary heating system, Journal of Materials and Environmental Science ,vol. 9 n. 3, January 2018, pp. 783-793.

N. Bekkioui, S. El Hakiki, A. Rachadi, H. Ez-Zahraouy, One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate, Renewable Energy, vol. 155, august 2020, pp. 770-782.
https://doi.org/10.1016/j.renene.2020.03.131

M. Simo-Tagne, A. Zoulalian, R.Rémond, Y. Rogaume, Mathematical modelling and numerical simulation of a simple solar dryer for tropical wood using a collector, Applied Thermal Engineering, vol. 131, February 2018,pp. 356-369.
https://doi.org/10.1016/j.applthermaleng.2017.12.014

P. Vengsungnle, J. Jongpluempiti, A. Srichat, S. Wiriyasart, P. Naphon, Thermal Performance of the Photovoltaic–ventilated Mixed Mode Greenhouse Solar Dryer with Automatic Closed Loop Control for Ganoderma Drying, Case Studies in Thermal Engineering, vol. 21,October 2020, 100659.
https://doi.org/10.1016/j.csite.2020.100659

G. M. Silva, A.G. Ferreira, R.M. Coutinho, C.B. Maia, Thermodynamic analysis of a sustainable hybrid dryer, Solar Energy ,vol. 208, September 2020, pp. 388-398.
https://doi.org/10.1016/j.solener.2020.08.014

A. D. Tuncer, A. Sözen, A. Khanlari, A.Amini, C. Şirin, Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer, Solar Energy, vol.203, June 2020, pp. 304-316.
https://doi.org/10.1016/j.solener.2020.04.030

P. Rani, P.P. Tripathy, Thermal characteristics of a flat plate solar collector: Influence of air mass flow rate and correlation analysis among process parameters, Solar Energy, vol. 211, November 2020, pp. 464-477.
https://doi.org/10.1016/j.solener.2020.08.057

K. Bhardwaj, R. Kumar, R. Chauhan, S. Kumar, Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region, Thermal Science and Engineering Progress, vol. 20, December 2020,100713.
https://doi.org/10.1016/j.tsep.2020.100713

S. Mohammed, M. Edna, K. Siraj, The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples, Heliyon, vol.6, Issue 6, June 2020, e04163.
https://doi.org/10.1016/j.heliyon.2020.e04163

R.Poblete, O. Painema, Improvement of the solar drying process of sludge using thermal storage, Journal of Environmental Management, vol. 255, February 2020, 109883.
https://doi.org/10.1016/j.jenvman.2019.109883

A.A. Anannob, M.H. Masud, P. Dabnichkia, A. Ahmedb, Design and numerical analysis of a hybrid geothermal PCM flat plate solarcollector dryer for developing countries, Solar Energy ,vol. 196, January 2020, pp. 270-286.
https://doi.org/10.1016/j.solener.2019.11.069

P.Kumar, D. Singh, A. technologies and performance investigations of solar dryers: A review, Renewable Energy Focus, vol. 35, December 2020, pp.148-158.
https://doi.org/10.1016/j.ref.2020.10.003

A. Djebli, S. Hanini, O. Badaouia,b, M. Boumahdi, A new approach to the thermodynamics study of drying tomatoes in mixed solar dryer, Solar Energy, vol.193, November 2019, pp. 164-174.
https://doi.org/10.1016/j.solener.2019.09.057

A. Jain, M. Sharma, A. Kumar, A. Sharma, A. Palamanit, Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer, Journal of Thermal Analysis and Calorimetry, vol.136, April 2019, pp.173-184.
https://doi.org/10.1007/s10973-018-7973-5

O. Badaoui, S. Hanini, A. Djebli, H. Brahim, A. Benhamou, Experimental and modeling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models, Renewable Energy, vol.133, April 2019, pp.144-155.
https://doi.org/10.1016/j.renene.2018.10.020

W.B. Chaouch, A. Khellaf, A. Mediani, M. A. Slimani, A. Loumani, A. Hamid, Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment, Solar Energy, vol.174, November 2018, pp. 328-341.
https://doi.org/10.1016/j.solener.2018.09.037

K. Kabidi, H. Samrani, M.N. Bargach, R. Tadili, Energy performance study of a direct solar dryer installed under sub humid region, International Journal of Renewable Energy, vol. 9 n.1, January 2014, pp. 1-8.

M. Sandali, A. Boubekri, D. Mennouche, N. Gherraf, Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study, Renewable Energy, vol.135, May 2019, pp. 186-196.
https://doi.org/10.1016/j.renene.2018.11.086

D.V.N. Lakshmi, P. Muthukumar, A.Layeka, P. K. Nayak, Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves, Solar Energy, vol.188, August 2019, pp.507-518.
https://doi.org/10.1016/j.solener.2019.06.009

B. M. A. Amer, K. Gottschalk, M.A. Hossain, Integrated hybrid solar drying system and its drying kinetics of chamomile, Renewable Energy, vol 121 n. 1, June 2018, pp. 539-547.
https://doi.org/10.1016/j.renene.2018.01.055

S. Abubakar, S. Umaru, M.U. Kaisan, U.A. Umar, B. Ashok, K. Nanthagopal,Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage, Renewable Energy, vol.128, December 2018 pp.285-298.
https://doi.org/10.1016/j.renene.2018.05.049

M. Sandali, A. Boubekri, D. Mennouche, N. Gherraf, Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study, Renewable Energy , vol. 135, May 2019, pp.186-196.
https://doi.org/10.1016/j.renene.2018.11.086

Z. Azaizia, S. Kooli, I. Hamdi, W. Elkhal, A.A. Guizani, Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper, Renewable Energy, vol.145, January 2020, pp.1972-1984.
https://doi.org/10.1016/j.renene.2019.07.055

M. Chandrasekar, T. Senthilkumar, B. Kumaragurubaran, J. P. Fernandes, Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate, Renewable Energy, vol. 122, July 2018, pp.375-381.
https://doi.org/10.1016/j.renene.2018.01.109

McAdams W.C., Heat Transmission, McGraw-Hill, New York (1954).

de Halleux, D., Deltour, J., Nijskens, J., Nisen, A. and Coutisse, S. (1985). Dynamic Simulation Of Heat Fluxes And Temperatures In Horticultural And Low Emissivity Glass-Covered Greenhouses. Acta Hortic. 170, 91-96.
https://doi.org/10.17660/actahortic.1985.170.9

De Halleux D., PhD Thesis, Fac. Univ. Sci. Agron., Gembloux, Belgium, (1989).

Deltour, J., de Halleux, D., Nijskens, J., Coutisse, S. and Nisen, A. (1985). Dynamic Modelling Of Heat And Mass Transfer In Greenhouses. Acta Hortic. 174, 119-126.
https://doi.org/10.17660/actahortic.1985.174.14

Deltour J., Nijskins J., Nisen A., Coutisse S., Center for Energy Savings Studies in Protected Crops, R. S.I.A. (1985b).

Duffie J.A., Beckman W. A., Solar Engineering of Thermal Processes, John Wiley and Sons, New York (1980).

Rohsenow WM., Hartnett JP., Handbook of Heat Transfer, McGraw-Hill, New York (1998).

M.S. Tagne, A. Zoulalian, R. Remond, Y. Rogaume, Mathematical modelling and numerical simulation of a simple solar dryer for tropical wood using a collector,Applied Thermal Engineering , vol. 131, February 2018, pp.356–369.
https://doi.org/10.1016/j.applthermaleng.2017.12.014

P.S. Chauhan, A. Kumar, Thermal modeling and drying kinetics of gooseberry drying inside north wall insulated greenhouse dryer, Applied Thermal Engineering, vol.130, February 2018, pp. 587–597.
https://doi.org/10.1016/j.applthermaleng.2017.11.028

P.S. Chauhan, A. Kumar, C. Nuntadusit, Heat transfer analysis of PV integrated modified greenhouse dryer, Renewable Energy vol.121, June 2018, pp. 53-65.
https://doi.org/10.1016/j.renene.2018.01.017

P.S. Chauhan, A. Kumar, C. Nuntadusit, J. Banout, Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer, Renewable Energy vol.118, April 2018, pp. 799-813.
https://doi.org/10.1016/j.renene.2017.11.069

A. Zoukit, H.E. Ferouali, I. Salhi, S. Doubabi, N. Abdenouri, Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection, Renewable Energy ,vol.133, April 2019, pp. 849-860.
https://doi.org/10.1016/j.renene.2018.10.082

S. Hatami, G. Payganeh, A. Mehrpanahi, Energy and exergy analysis of an indirect solar dryer based on a dynamic model, Journal of Cleaner Production, vol.244, January 2020,118809.
https://doi.org/10.1016/j.jclepro.2019.118809

E. Tarigan, Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage, Case Studies in Thermal Engineering vol. 12,September 2018,pp. 149-165.
https://doi.org/10.1016/j.csite.2018.04.012

A.ElKhadraoui, S. Bouadila, S. Kooli, A. Farhat, A. Guizani, Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM, Journal of Cleaner Production, Vol. 148, n. 1, pp. 37-48, 2017.
https://doi.org/10.1016/j.jclepro.2017.01.149

Wei Tong, Wind Power Generation and Wind Turbine Design (Kollmorgen Corp, USA, 2010).

A. Walsh, D. Cóstola, L. Labaki, Review of methods for climaticzoning for building energy efficiency programs, Building and Environment, vol. 112,pp. 337-350, 2017.
https://doi.org/10.1016/j.buildenv.2016.11.046

K. Kant, A. Shukla, A. Sharma, A. Kumar, A. Jain, Thermal energy storage based solar drying systems , Innovative Food Science and Emerging Technologies, vol. 34, n. 1, 2016, pp. 86-99.
https://doi.org/10.1016/j.ifset.2016.01.007

A. Djebli, S. Hanini , O. Badaoui , B. Haddad ,Amina Benhamou , Modeling and comparative analysis of solar drying behavior of potatoes, International Journal of Renewable Energy, vol. 145, January 2020, pp. 1494-1506.
https://doi.org/10.1016/j.renene.2019.07.083

P.K. Devan, C. Bibin, I. Asburris Shabrin, R. Gokulnath, D. Karthick, Solar drying of fruits – A comprehensive review, Materials Today: Proceedings, vol.33, Part 1, 2020, pp. 253-260.
https://doi.org/10.1016/j.matpr.2020.04.041

M. Ssemwanga, E. Makule, S.I Kayondo,Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits, Solar Energy, vol. 204, July 2020, pp. 419-428.
https://doi.org/10.1016/j.solener.2020.04.065

Z. Alimohammadi, H.S. Akhijahani, P. Salami, Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods, Solar Energy, vol. 201, May 2020, pp.157-177.
https://doi.org/10.1016/j.solener.2020.02.079

J. P. Ekka, K. Bala, P. Muthukumar, D. K.Kanaujiya, Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates, Renewable Energy, vol.152, June 2020, pp. 55-66.
https://doi.org/10.1016/j.renene.2020.01.035

A. Lingayat, V.P. Chandramohan, V.R.K. Raju, Anil Kumar, Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon, Thermal Science and Engineering Progress, vol.16, May 2020,100477.
https://doi.org/10.1016/j.tsep.2020.100477

A. Brouche, C. Lahoud, M. F. Lahoud, C. Lahoud, Solar drying simulation of different products: Lebanese case, Energy Reports, vol.6, Supplement 6,November 2020,pp. 548-564.
https://doi.org/10.1016/j.egyr.2020.09.032

M. Simo-Tagne, L. Bennamoun, Numerical study of timber solar drying with application to different geographical and climatic conditions in Central Africa, Solar Energy, vol. 170, august 2018, pp. 454-469.
https://doi.org/10.1016/j.solener.2018.05.070

D. Jain, G.N. Tiwari, Thermal aspects of open sun drying of various crops , Energy, Vol. 28, n. 1, 2003, pp. 37-54.
https://doi.org/10.1016/s0360-5442(02)00084-1

M. C. Téllez, I. P. Figueroa, B. C.Téllez, E. C. L. Vidaña, A.L. Ortiz, Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies, Solar Energy, vol.159, January 2018, pp. 898-907.
https://doi.org/10.1016/j.solener.2017.11.031

A.K. Bhardwaj, R. Kumar, R. Chauhan, Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region, Solar Energy,vol.177, January 2019, pp. 395-407.
https://doi.org/10.1016/j.solener.2018.11.007

D.V.N. Lakshmi, P. Muthukumar, A. Layek, P. K. Nayak, Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves, Solar Energy,vol.188, August 2019, pp. 507-518.
https://doi.org/10.1016/j.solener.2019.06.009

S. Vijayan, T.V. Arjunan, A.l Kumar, Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices, Renewable Energy,vol.146, February 2020, pp. 2210-2223.
https://doi.org/10.1016/j.renene.2019.08.066

S. Mghazli, M. Ouhammou, N. Hidar, L. Lahnine, A. Idlimam, M. Mahrouz., Drying characteristics and kinetics solar drying of Moroccan rosemary leaves, Renewable Energy, Vol.108, n. 1, 2017, pp. 303-310.
https://doi.org/10.1016/j.renene.2017.02.022

M.A. Hossain., B.M.A. Amer, K. Gottschalk, Hybrid solar dryer for quality dried tomato, Drying Technology, Vol. 26, n. 2, Jun 2010 , pp. 1591-1601.
https://doi.org/10.1080/07373930802467466

Y. Mohana, R. Mohanapriya, T. Anukiruthika, K.S. Yoha, J.A. Moses, C. Anandharamakrishnan, Solar dryers for food applications: Concepts, designs, and recent advances, Solar Energy, vol. 208, September 2020,pp. 321-344.
https://doi.org/10.1016/j.solener.2020.07.098

A. Lamharrar, A. Idlimam, M. Kouhila., Thin layer forced convective solar drying characteristics of artemisiaherba-alba, Journal of Materials and Environmental Science, Vol. 6, n. 1, 2015, pp. 264-271.

K. Karthick, S. Suresh, M.M.M.D. Hussain, H.M. Ali, C.S.S. Kumar, Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review, Solar Energy vol.188, August 2019, pp. 111-142.
https://doi.org/10.1016/j.solener.2019.05.075

M.C. Ndukwu, D. Onyenwigwe, F.I. Abam, A.B. Eke, C. Dirioha, Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage, Renewable Energy, vol. 154, July 2020, pp. 553-568.
https://doi.org/10.1016/j.renene.2020.03.016

O. García-Valladares, N.M. Ortiz, I. Pilatowsky, A.C. Menchaca, Solar thermal drying plant for agricultural products. Part 1: Direct air heating system, Renewable Energy, vol. 148, April 2020, pp.1302-1320.
https://doi.org/10.1016/j.renene.2019.10.069

A. Singh, J.Sarkar, R. R. Sahoo, Experimental performance analysis of novel indirect-expansion solar-infrared assisted heat pump dryer for agricultural products, Solar Energy, vol. 206, august 2020, pp. 907-917.
https://doi.org/10.1016/j.solener.2020.06.065


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize