Modelling of the Local Thermal and Hydrodynamic Exchanges in the Boundary Layer Over a Paraboloidal Pond of Retention Filled with Water in Forced Convection

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


In this work, the author modeled the simultaneous transfers of heat and mass in a paraboloidal pond of retention filled with water and in a layer of fluid over the pond in unsteady regime; the interface of the pond is traveled by a forced hot air. In the water, he used the formalism vorticity-stream function to return linear and more moldable quasi-numerically the transfers equation. To solve the equations in the air which is constituted by a mixture dry air and of steam, the hypotheses of the thermal, mass and dynamic laminar limit layers are adopted. The dimensionless equations are resolved by means of the implicit and semi methods implicit method. In this work the author analyzed the regime establishment and the influence of the Reynolds number on the local values. The obtained results are calculated for numbers of Reynolds varying from 10 to 400.
Copyright © 2015 Praise Worthy Prize - All rights reserved.


Evaporation; Heat and Mass Transfers; Boundary Layer; Ponds of Retention

Full Text:



J. w. Mitchell Heat transfer from sphere and other animals form, Biotechnical Journal 16, 561 (1976)

Bejan, A. (1984), Convection Heat Transfer, A. Wiley- interscience Publication, John Viley&Sons, New York, NY.

A.V. Luikov, Systems of differential equations of heat and mass transfer in capillary-porous bodies (review), International Journal of Heat and Mass Transfer, Volume 18, Issue 1, 1975, Pages 1-14.

A.V. Luikov, Application of irreversible thermodynamics methods to investigation of heat and mass transfer, International Journal of Heat and Mass Transfer, Volume 9, Issue 2, 1966, Pages 139-152.

R.N. Pandey, S.K. Srivastava, M.D. Mikhailov, Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach, International Journal of Heat and Mass Transfer, Volume 42, Issue 14, 1 July 1999, Pages 2649-2660.

J.-L. Battaglia, , L. Puigsegur , A. Kusiak Représentation non entière du transfert de chaleur par diffusion. Utilité pour la caractérisation et le contrôle non destructif thermique R. Barriol , ENSICA 49, Avenue Léon Blum, 33000 Toulouse, France

A. Agunaoun, A. Daif, R. Barriol, M. Daguenet, Evaporation en convection forcée d'un film mince s'écoulant en régime permanent, laminaire et sans onde, sur une surface plane inclinée, International Journal of Heat and Mass Transfer, Volume 37, Issue 18, December 1994, Pages 2947-2956.

Ab. Touhami (1990) « Etude du séchage d’un cylindre annulaire poreux humide sous l’action d’un courant d’air forcé dans le conduit centrale : couplage des équations de Luikov et celles de la couche limite ». Laboratoire de Thermodynamique et Energétique, Perpignan, France.

Bairamov and all Heat and mass Transfer to models of stills of various configurations, Geotechnica 4, 4, 45-47 (1968).

Peaceman, D.W. and Rachford, H.H (1955) “The numerical solution of parabolic and elliptic differential equation”, Journal of the society for industrial and Applied Mathematics, Vol. 3, No.1, pp. 28-41.

Roger K. Smith « A simple model of hurricane boundary layer », Q. J. R. Meteorol. Soc. (2002), 128, pp. 1–20.

Ch. Mbow (2000) ; « Méthodes Itérative Implicite aux directions alternées ». Communication interne, Laboratoire de Thermodynamique et Energétique, Perpignan, France

H. Schlichting « Boundary layer theory », 6th edition, (1968), Q.J.R. Meteorol. Soc. (2003), 129, pp.1007-1027.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize