Open Access Open Access  Restricted Access Subscription or Fee Access

Genetic Algorithm and Based Particle Swarm Optimization Comparison for Solving a Flow-Shop Multiobjective Scheduling Problem in Pharmaceutical Industries

(*) Corresponding author

Authors' affiliations



This paper deals with the comparison between two non-conventional optimization methods which are genetic algorithms and a new based particle swarm optimization one for multiobjective flow-shop scheduling problem resolution, in pharmaceutical industries. Results obtained by the comparison of these methods show the efficiency of the proposed based particle swarm optimization method.
Copyright © 2018 Praise Worthy Prize - All rights reserved.


Based Particle Swarm Optimization (BPSO); Genetic Algorithm (GA); Multiobjective Flow-Shop Scheduling Problem; Particle Swarm Optimization (PSO); Pharmaceutical Industries

Full Text:



M. Watanabe, K. Ida and M. Gen, A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem, Computers and Industrial Engineering, Vol. 48 : 743-752, 2005.

F. Ruiz-Diaz, and S. French, A survey of multi-objective combinatorial scheduling, Multiobjective Decision Making Academic Press, New York, pp. 59-77, 1983.

V. R. Neppalli, C. L. Chen, J. N. D. Gupta, Genetic algorithms for the two-stage bicriteria flowshop problem, European Journal of Operational Research, Vol. 95 : 356-373, 1996.

P. Borne and F. Tangour, Metaheuristic for the optimization in planning and scheduling, Conférence plénière, MCPL2007 IFAC Conference, Sibiu, Proc. T1, pp.1-8 Septembre 2007.

F. Tangour and P. Borne, Presentation of some Metaheuristics for the Optimisation of Complex Systems, Studies in Informatics and Control, Vol. 17 (Issue 2): 169-180, 2008.

J. H. Holland, Adaptation in natural and artificial systems, PhD, Michigan Press Univ., Ann Arbor, MI, 1975.

P. C. Chang, J. C. Hsieh and C. Y. Wang, Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry, Applied Soft Computing, Vol. 7 : 800-806, 2007.

M. H. Mabed, M. Rahoual, E.G. Talbi et C. Dhaenens, Algorithmes génétiques multicritères pour les problèmes de flow-shop, Third Francophone Conference of Modélisation et SIMulation, MOSIM’01, Troyes, pp. 843-849, 2001.

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Sixth International Symposium on Micromachine and Human Science, Nagoya, pp. 39–43, 1995.

J. Kennedy and R. Eberhart, Particle swarm optimization, International Conference on Neural Networks, Perth, pp. 1942–1498, 1995.

M. Clerc, L’optimisation par essaim particulaire. Principes, modèles et usages, Technique et Science Informatiques, Vol. 21: 941-964, 2002.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley Editions, New York, 1997).

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning ( Addison-Wesley Editions, 1989).

N. Durand, J. M. Alliot et J. Noailles, Algorithmes génétiques : un croisement pour les problèmes partiellement séparables, Journées Evolution Artificielle Francophones, JEAF, Toulouse, 1994.

H. Boukef, M. Benrejeb and P. Borne, A proposed genetic algorithm coding for flow-shop scheduling problems, International Journal of Computers, Communications and Control, IJCCC, Vol. 2 (Issue 3) : 229-240, 2007.

M. Clerc, L’optimisation par essaims particulaires. Versions paramétriques et adaptatives (Hermes Editions, 2005).

K.V. Frish, Vie et moeurs des abeilles (Albin Michel Editions, 1984).

E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence : from natural to artificial systems (Oxford University Press, 1999).

J. Kennedy, R. Eberhart and Y. Shi, Swarm Intelligence (Morgan Kaufmann Academic Press, 2001).

I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters, Vol. 85 : 317-325, 2003.

H. Boukef, M. Benrejeb and P. Borne, Flexible Job-shop Scheduling Problems Resolution Inspired From Particle Swarm Optimization, Studies In Informatics And Control, SIC, Vol. 17 (Issue 3) : 241-252, 2008.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize