Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal Simulation and Experimental Characterizations of Aeronautic Stainless Steel Welded by TIG Process


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In order to study the thermal behaviour of aeronautic stainless steel welded by TIG process, we have improved the energetic distribution formulation by adapting the geometric configuration into a bi-elliptic form with Gaussian surface heat flow distributions of the welding source. The Thermal transient fields and thermal cycles are evaluated to determine dimensions of the risky zones (Heat Affected Zone and Fusion Zone) and the welded joint is characterized by tension tests, micro-hardness (Hv) and micrographics. A metallographic analysis is prepared to differentiate all zones as well as the grain sizes, and to confirm theirs widths. Computations are carried out by finite volume method, where thermo-physic’s properties and boundary conditions are in function of temperature. The reliability of the model is evaluated by the comparison of the simulated results with those obtained by thermal cycle recordings to evaluate the size of the risky zones. Both, theoretical and experimental approaches have good agreement and give an enhancement of a previous work.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Aeronautic Stainless Steel; Mechanical and Metallurgical Characterization; TIG Welding; Thermal Simulation

Full Text:

PDF


References


W. Lucjan, Failure analysis of the wing-fuselage connector of an agricultural aircraft. Engineering Failure Analysis, Vol.13, Issue 4, pp. 572-581, 2006.
http://dx.doi.org/10.1016/j.engfailanal.2004.12.029

P. F. Mendez, T. W. Eagar, Welding processes for aeronautics, Advanced Materials and Processes, pp.39-43, 2001, May.
http://dx.doi.org/10.1007/978-94-009-0433-0_5

V. A. Vinogradov, L. N. Shchavelev, V. S. Popenko, A. Sereznov, Welding components of the active zone of nuclear reactors, Welding International Vol.8, n. 7, pp. 546-549, 1994.
http://dx.doi.org/10.1080/09507119409548646

M. Martinussen, Numerical modelling and model reduction of heat flow in robotic welding. Master of Science in Engineering Cybernetics, Norwegian University of Science and Technology, July 2007.
http://dx.doi.org/10.1179/174329305x36070

K. R. Balasubramanian, N. S. Shanmugam, G. Buvana-shekaran, K. Sankaranarayanasmy, Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. APEM Journal, Vol. 3, n.2, pp. 93-105, 2008.
http://dx.doi.org/10.1111/j.1747-1567.2009.00552.x

H. Granjon, Propos métallurgiques sur le soudage -la zone de liaison. Ouvrage Procédés, N°3, Mai 1992
http://dx.doi.org/10.1017/s0012217300028158

D. Rosenthal, Mathematical theory of heat distribution during welding and cutting. Welding Journa, Vol. 20, pp. 220-234, 1941.
http://dx.doi.org/10.1533/wint.2006.3534

P. S. Myers, O. A. Uyehara, G. L. Borman, Fundamentals of Heat Flow in welding. Welding Research Council Bulletin N°123, 1967.
http://dx.doi.org/10.1007/978-1-349-03073-6_3

V. Pavelic, R. Tanbakuchi, O. A. Uyehara, P. S. Myers, Experimental and computed temperature histories in gas tungsten arc welding of thin plates, Welding Journal Research Supplement, Vol. 48, pp. 295-305, 1969.
http://dx.doi.org/10.3403/30308069

E. Friedman, Thermomechanical analysis of the welding process using the finite element method. ASME Journal of Pressure Vessel Technology, Vol. 973, pp. 206-213, 1975.
http://dx.doi.org/10.1115/1.3454296

G. W. Krutz, L. J. Segerlind, Finite element analysis of welded structures. Welding Journal Research Supplement Vol. 57, pp. 211-216, 1978.
http://dx.doi.org/10.4271/760694

L. E. Lindgren, Finite element modeling and simulation of welding, Part1: Increasing complexity. Journal of Thermal Stresses, Vol.24, pp. 141-192, 2001.
http://dx.doi.org/10.1080/01495730150500442

J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metallurgical Transactions B, Vol.15B, pp. 299-305, 1984.
http://dx.doi.org/10.1007/bf02667333

J. Goldak, A. Chakravarti, M. Bibby, A double ellipsoid finite element model for welding heat sources, IIW Doc N°212-603-85, 1985.
http://dx.doi.org/10.1007/bf02667333

H. Fang, Q. Meng, W. Xu, S. Ji, New general double ellipsoid heat source model. Science and Technology of Welding & Joining, Vol.10 n.3, pp. 361-368, 2005.
http://dx.doi.org/10.1179/174329305x40705

Trivedi A, Bag S, De A. Three-dimensional transient heat conduction and thermomecanical analysis for laser spot welding using adaptive heat source. Science and Technology of Welding & Joining, Vol.12, n.1, pp. 24-31, 2007.
http://dx.doi.org/10.1179/174329306x148174

Hu J. F., J. G. Yang, H. Y. Fang, G. M. Li, Y. Zhang, Numerical simulation on temperature and stress fields of welding with weaving. Science and Technology of Welding & Joining, Vol.11, n.3, pp. 358-365, 2006.
http://dx.doi.org/10.1179/174329306x124189

L. E. Lindgren, Finite element modeling and simulation of welding, Part2: Improved material modeling. Journal of Thermal Stresses, Vol.24, pp. 195-231, 2001.
http://dx.doi.org/10.1080/014957301300006380

K. T. Chaouch, H. Maza, B. Belkessa, A finite volume analysis of two-dimensional transient heat transfer in TIG welding. J. Phys. IV, Vol. 120, pp. 669-675, 2004.
http://dx.doi.org/10.1115/imece2003-41649

M.Aissani, H.Maza, B.Belkessa,B.Maamache, Contribution à la modélisation du soudage TIG des tôles minces d’acier austénitique 304L par un modèle source bi-elliptique, avec confrontation expérimentale. J.Phys.IV,Vol.124,pp.213-220, 2005.
http://dx.doi.org/10.1051/jp4:2005124031

R. N. S. Fassani, O. V. Trevisan, Analytical Modeling of Multipass Welding Process with Distributed Heat Source. J. Braz. Soc. Mech. Sci, Vol.25 n. 3, Rio de Janeiro, 2003.
http://dx.doi.org/10.1590/s1678-58782003000300013

D. Gery, H. Longb, P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J of Materials Processing Technology, Vol 167, pp. 393-401, 2005.
http://dx.doi.org/10.1016/j.jmatprotec.2005.06.018

M. Awang, The effects of process parameters on steel welding response in curved plates. Master Thesis of science, Morgantown - West Virginia, 2002.
http://dx.doi.org/10.1109/ssst.2003.1194524

D. Berglund, H. Alberg, M. Runnemal, Simulation of welding and stress relief heat treatment of an aero engine component. Finite Elements in Analysis and design, Vol.39, pp. 865-881, 2003.
http://dx.doi.org/10.1016/s0168-874x(02)00136-1

H. Alberg, Simulation of welding and heat treatment - modeling and validation. PH.D. thesis, Lulia University of technology, Sweden, 2005.
http://dx.doi.org/10.1179/174329305x57464

M. Aissani, Y. Benkedda, D. H. Bassir, N. Fenineche, Étude thermique comparative de deux nuances d’aluminium soudées par le procédé TIG, 6ème Séminaire Annuel, (SNS2008 Simulation Numérique du Soudage), Paris-France, mars 2008, pp. 18-19.
http://dx.doi.org/10.1051/jp4:2005124042

S. V. Patankar, Numerical heat transfer and fluid flow (Hemisphere publish corp. New York, 1980).
http://dx.doi.org/10.1002/cite.330530323

K. Hong, D. C. Weckman, A. B. Strong, The influence of thermo-fluids phenomena in gas tungsten arc welds in high and low thermal conductivity metals. Canadian Metallurgical Quarterly, Vol 37, n. 3-4, pp. 293-303 1998.
http://dx.doi.org/10.1016/s0008-4433(97)00021-9


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize