Open Access Open Access  Restricted Access Subscription or Fee Access

Sensitivity of Convection Schemes and Microphysics in Mesoscale Simulations of Squall Line Observed During the AMMA Campaign Using the WRF Model


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this paper, a sensitivity study of convection schemes and cloud microphysics is performed using the Weather Research and Forecasting (WRF) model. It concerns the mesoscale simulation of the squall line observed during the African Monsoon Multidisciplinary Analysis campaign on September 22nd, 2006. Four convection schemes (Kain-Fritsch, Grell-Devenyi, Tietke and New Simplified Arakawa-Schubert) and five microphysics schemes (WRF Single-Moment 3-class (WSM3), WRF Single-Moment 5-class (WSM5), WRF Single-Moment 6-class (WSM6), Thompson and NSSL2-moment) are used. Each microphysics scheme is associated with a convection scheme, giving twenty combinations. The goal is to find the combination able to provide a realistic representation of the meteorological fields associated to the studied squall line, especially those of precipitation. The New Simplified Arakawa-Schubert convection scheme combined either with the WSM6 microphysics scheme, either with the WSM5 microphysics scheme or Thompson scheme was found to give a result closer to observation. The study also confirms that convection schemes have much more influence than microphysics on precipitation heights.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


WRF Model; Convection Parameterization Schemes; Cloud Microphysics Schemes; Squall Lines; AMMA (African Monsoon Multidisciplinary Analysis)

Full Text:

PDF


References


R. A., Jr., Houze, Mesoscale convective systems, Rev. Geophys.,42 (2004), RG4003, doi:10.1029/2004RG000150.
http://dx.doi.org/10.1029/2004rg000150

D. K. Lilly, The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci. 7 (1979), 117-61
http://dx.doi.org/10.1146/annurev.ea.07.050179.001001

N., D’amato et T. Lebel, 1998. On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability Int. J. Climatol., 18 (1998), 955 – 974
http://dx.doi.org/10.1002/(sici)1097-0088(199807)18:9%3C955::aid-joc236%3E3.3.co;2-y

T., Lebel, A. Amani et J. D. Taupin, Variabilité spatial de pluies au sahel, une question d’échelle: 2. Modelisation. Water Resources Variability in Africa during the XXth Century (Proceeding of the Abidjan 98 Conference held at Abidjan, Côte d’Ivoire, November 1998). IAHS Publi n° 252.
http://dx.doi.org/10.6026/97320630010671

J., Crétat and B. Pohl, How Physical Parameterizations Can Modulate Internal Variability in a Regional Climate Model. J. Atmos. Sci., 69 (2012), 714–724.
http://dx.doi.org/10.1175/jas-d-11-0109.1

M. J., Yang and Tung. Q. C., Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J. Meteor. Soc. Japan, 81(2003), 1163-1183
http://dx.doi.org/10.2151/jmsj.81.1163

B., Pohl, J. Cretat et P. Camberlin, Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn., 37 (2011) 1357-1376
http://dx.doi.org/10.1007/s00382-011-1024-2

Gallus W. A., Jr., Eta simulations of three extreme precipitation events: Impact of resolution and choice of convective parameterization. Wea. and Forecasting, 14(1999), 405-426.
http://dx.doi.org/10.1175/1520-0434(1999)014%3C0405:esotep%3E2.0.co;2

Dudhia, J., G. Dave, K. Manning, W. Wang, and C. Bruyere, PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3, NCAR, Boulder, Colo., (2003)
http://dx.doi.org/10.1175/1520-0493(2002)130%3C2989:agvotp%3E2.0.co;2

Jankov I., M. Segal, B. Shaw, and S. E. Koch, The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting,20 (2005), 1048–1060.
http://dx.doi.org/10.1175/waf888.1

Yu, E., H. Wang, Y. Gao, and J. Sun, Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. Acta Meteorol Sin, 25(2011), 581-592.
http://dx.doi.org/10.1007/s13351-011-0504-y

Kondowe A. L., 2014: Impact of Convective Parameterization Schemes on the Quality of Rainfall Forecast over Tanzania Using WRF-Model. Natural Science, 6 (2014), 661-669.
http://dx.doi.org/10.4236/ns.2014.610069

Fovell, R. G. and Y. Ogura, Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45(1988), 3846–3879.
http://dx.doi.org/10.1175/1520-0469(1988)045%3C3846:nsoams%3E2.0.co;2

McCumber, M., W. K. Tao, J. Simspon, R. Penc, and S. T Soong, Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection, J. Appl. Meteorol., 30 (1991), 985–1004.
http://dx.doi.org/10.1175/1520-0450-30.7.985

Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 (2004b), 2610–2627.
http://dx.doi.org/10.1175/mwr2810.1

Liu, C. and M. W Moncrieff, Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations, Mon. Weather Rev., 135 (2007), 2854–2868.
http://dx.doi.org/10.1175/mwr3437.1

Morrison H., G. Thompson and V. Tatarskii, Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137 (2009), 991–1007.
http://dx.doi.org/10.1175/2008mwr2556.1

Rajeevan, M., A. Kesarkar1, S. B. Thampi, T. N. Rao1, B. Radhakrishna1, and M. Rajasekhar, Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India, Ann. Geophys., 28(2010), 603–619.
http://dx.doi.org/10.5194/angeo-28-603-2010

Hong S.-Y., Y. Noh, and J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 (2006), 2318–2341.
http://dx.doi.org/10.1175/mwr3199.1

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (1997 ) (D14), 16663–16682.
http://dx.doi.org/10.1029/97jd00237

Monin A. S., and A. M., Obukhov,: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contributions of the Geophysical Institute of the Slovak Academy of Sciences, 24 (1954) (151), 163–187.
http://dx.doi.org/10.1029/2004jd004923

Chen F. and J. Dudhia,: Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Mon. Wea. Rev., 129 (2001), 569–585.
http://dx.doi.org/10.1175/1520-0493(2001)129%3C0569:caalsh%3E2.0.co;2

Hong S.-Y., J. Dudhia, and S.-H. Chen, A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev., 132(2004), 103–120.
http://dx.doi.org/10.1175/1520-0493(2004)132%3C0103:aratim%3E2.0.co;2

Hong, S.-Y., and J.-O. J. Lim, The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42(23), 129–151.
http://dx.doi.org/10.1155/2016/5094126

Thompson G., P. R. Field, R. M. Rasmussen, W. D. Hall, Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136(2008), 5095–5115
http://dx.doi.org/10.1175/2008mwr2387.1

Mansell E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two–moment bulk microphysics. J. Atmos. Sci., 67(2010), 171–194.
http://dx.doi.org/10.1175/2009jas2965.1

Kain J. S., The Kain–Fritsch Convective Parameterization: An Update, J. Appl. Met., 43(2004), 170-181.
http://dx.doi.org/10.1175/1520-0450(2004)043%3C0170:tkcpau%3E2.0.co;2

Grell, G. A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 (2002), 38-1-38-4.
http://dx.doi.org/10.1029/2002gl015311

Tiedtke M., A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Wea. Rev., 117(1989), 1779–1800.
http://dx.doi.org/10.1175/1520-0493(1989)117%3C1779:acmfsf%3E2.0.co;2

Zhang C., Y. Wang, A. Lauer, and K. Hamilton, Configuration and Evaluation of WRF model for the Study of Hawaiian Regional Climate, Mon. Wea. Rev., 140 (2012), 3259-3279.
http://dx.doi.org/10.1175/mwr-d-11-00260.1

Han J. and H.-L. Pan, Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Wea. Forecasting, 26(2011), 520–533.
http://dx.doi.org/10.1175/waf-d-10-05038.1

Penide G., 2010: Mise en place de simulateurs d'instruments de télédétection dans un modèle mésoéchelle (BRAMS): Application à l'étude d'un système convectif observé pendant la campagne AMMA. Université Blaise Pascal - Clermont-Ferrand II, 210 pages.
http://dx.doi.org/10.5176/2251-1865_cbp16.3

Steiner M., R. A. Houze and S. E. Yuter, Climatological Characterization of Three-Dimensional Storm Structure from Radar and Rain Gauge Data. J. Appl. Meteor., 34(1995), 1978–2007.
http://dx.doi.org/10.1175/1520-0450(1995)034%3C1978:ccotds%3E2.0.co;2

Duda, D., WRF simulations of mesoscale convective systems at convection-allowing resolutions. Graduate Theses and Dissertations (2011). Paper 10272.
http://dx.doi.org/10.1002/2014jd021875

Mercader J., B. Codina, A. Sairouni and J. Cunillera, Results of the meteorological model WRF-ARW over Catalonia, using different parameterizations of convection and cloud microphysics. Tethys, 7(2010), 75-86.
http://dx.doi.org/10.3369/tethys.2010.7.07

Litta A. J., S. M. Idicula and U. C. Mohanty: A comparative study of convective parameterization schemes in WRF model. International Journal of Computer Applications (0975 – 8887), 33 (2011), 32-39.
http://dx.doi.org/10.5120/3075-4205

J., Crétat, B. Pohl, Y. Richard et P Drobinski, Sensibilité d’un Modèle à air limitée à sa paramétrisation physique: Application en Afrique Australe. Ateliers de modélisation de l’Atmosphère, Jan 2010, Toulouse, France.
http://dx.doi.org/10.3406/bagf.2010.8152

Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison, Modeling convective-stratiform precipitation processes on a Meiyu front with the WRF model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115(2010), D18117, doi: 10.1029/2010JD013873.
http://dx.doi.org/10.1029/2010jd013873

H.,Morrison and Milbrandt J., Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations, Mon. Wea. Rev., 139 (2011), 1103-1130.
http://dx.doi.org/10.1175/2010mwr3433.1

G., H. Bryan and Morrison H., Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics, Mon. Wea. Rev., 140 (2012), 202-225
http://dx.doi.org/10.1175/mwr-d-11-00046.1

R., D. Adams-selin, Van Den Heever S. C. and Johnson R. H., Sensitivity of Bow-Echo Simulation to Microphysical Parameterizations, Mon. Wea. Rev., 28 (2013), 1188-1209
http://dx.doi.org/10.1175/waf-d-12-00108.1


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize