Band Characteristics of a Parity-Time Symmetric Photonic Crystal Made of Multi-Level Atomic Systems


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Partity-time symmetry enables a quantum system or an optical/electromagnetic structure to have real eigenvalue spectra of energy (or wave number). A relatively simple and convenient scenario, which takes advantage of multi-level transition and optical pumping in a four-level atomic system, is suggested in order to achieve parity-time symmetry of such an atomic medium. In the present parity-time symmetric atomic vapor, the real part of the obtained electric permittivity is a constant, and the imaginary part is an odd function (e.g., sine function of spatial coordinate). The optical characteristics of such a parity-time symmetric periodic dielectric have also been studied in this paper. It can be found that the Bloch wave numbers in the present periodic dielectric are purely real or purely imaginary. A threshold in the magnitude of the imaginary part of the parity-time symmetric permittivity for emergence of forbidden band is also indicated in our numerical calculation. The present scenario for realizing parity-time symmetric atomic vapor would find potential applications in some new photonic or quantum optical device design and fabrication.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Parity-Time Symmetry; Photonic Crystal; Atomic Vapor; Optical Gain

Full Text:

PDF


References


A. Mostafazadeh: J. Phys. A: Math. Gen. Vol. 36 (2003), p.7081.
http://dx.doi.org/10.1088/0305-4470/36/25/312

C. E. Rüter, K. G. Makris, and R. EI-Ganainy,D. N. Christodoulides, M. Segev, and D. Kip: Nature Phys. Vol. 6 (2010), p.192.
http://dx.doi.org/10.1038/nphys1515

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer: Nature Mater. Vol. 12 (2013), p. 108.
http://dx.doi.org/10.1038/nmat3495

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides: Phys. Rev. Lett. Vol. 106 (2011), p. 213901.
http://dx.doi.org/10.1103/physrevlett.106.213901

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer: Science Vol. 333 (2011), p. 729.
http://dx.doi.org/10.1126/science.1206038

Y.-L. Xu, L. Feng, M.-H. Lu, Y.-F. Chen: Phys. Lett. A Vol. 376 (2012), p. 886.

X. Zhu, L. Feng, P. Zhang, X. Yin, X. Zhang: Opt. Lett. Vol. 38 (2013), p. 2821.
http://dx.doi.org/10.1364/ol.38.002821

J. Q. Shen: Europhys. Lett. Vol. 105 (2014), p. 17006.

M. Fleischhauer, A. Imamoglu and J. Marangos: Rev. Mod. Phys. Vol. 77 (2005), p. 633.
http://dx.doi.org/10.1103/revmodphys.77.633

J. L. Cohen and P. R. Berman: Phys. Rev. A Vol. 55 (1997), p. 3900.
http://dx.doi.org/10.1103/physreva.55.3900

S. Y. Zhu and M. O. Scully: Phys. Rev. Lett. Vol. 76 (1996), p. 388.
http://dx.doi.org/10.1103/physrevlett.76.388

C. Champenois, G. Morigi and J. Eschner: Phys. Rev. A Vol. 74 (2006), 053404.
http://dx.doi.org/10.1103/physreva.74.053404

A. M. Zheltikov: Phys. Rev. A Vol. 74 (2006), 053403

A. Gandman, L. Chuntonov, L. Rybak and Z. Amitay: Phys. Rev. A Vol. 75 (2007), 031401.
http://dx.doi.org/10.1103/physreva.75.031401

H. Schmidt and A. Imamoğlu: Opt. Lett. Vol. 21 (1996), p. 1936

C. M. Krowne and J. Q. Shen: Phys. Rev. A Vol. 79 (2009), 023818.

H.-J. Li, J.-P. Dou, and G. Huang: Opt. Express Vol. 21 (2013), p. 32053.
http://dx.doi.org/10.1364/oe.21.032053

C. Hang, G. Huang, and V. V. Konotop: Phys. Rev. Lett. Vol. 110 (2013), p. 083604.
http://dx.doi.org/10.1103/physrevlett.110.083604

Y.-S. Lee, Principles of Terahertz Science and Technology, Chap. 2 (Springer Science+Business Media, LLC, New York, 2009).

P. Yeh: Optical Waves in Layered Media, Chapts. 4-6, pp. 83-143 (John Wiley & Sons, Inc., New Jersey, 2005).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn: Photonic Crystal: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

M. Skorobogatiy and J. Yang: Fundamentals of Photonic Crystal Guiding (Cambridge University Press, New York, 2009).
http://dx.doi.org/10.1017/cbo9780511575228


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize