Post Thermal Annealing Effect on the Optical Properties of SnO2 Films Prepared by Electron Beam Evaporation Technique

Hussein Mohamed(1*), N. M. A. Hadia(2)

(1) Physics department, Faculty of Science, Sohag University, Egypt
(2) Physics department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This work reports on the effect of post thermal annealing on the optical properties of SnO2 films. The films were deposited using electron beam evaporation technique. The films were annealed in air in the temperature range 200-550 oC. It was found that the annealing temperature has a significant effect on the optical properties of these films. The films are transparent in the visible region with average transmission of 83%. A high optical energy-gap of 3.65 eV was achieved at temperature 500 oC. Many optical parameters such as: refractive index; extinction coefficient; degree of inhomogeneity; dielectric constants; single oscillator energy; dispersion energy; oscillator strength; average oscillator wavelength; static dielectric constant; high frequency dielectric constant; thermal emissivity and optical resistivity were calculated as a function of annealing temperature. Finally, SnO2 films can be used in transparent heat mirror coatings applications due to their low thermal emissivity at high annealing temperature.


Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


SnO2; TCO Thin Film; Electron Beam; Post Thermal Annealing; Optical Properties

Full Text:

PDF


References


H. M. Alia, H. A. Mohamed and S. H. Mohamed, Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique, Eur. Phys. J. Appl. Phys. 31(2005), 87-93.

M. Chen, Z. L. Pei, C. Sun, L.S. Wen and X. Wang, Surface characterization of transparent conductive oxide Al-doped ZnO films, J. Cryst. Growth 220 (2000), 254-262.

B. Saha, R. Thapa and K. K. Chattopadhyay, Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique, Solid State Commun. 145(2008), 33-37.

M. Kul, A. S. Aybek, E. Turan, M. Zor and S. Irmak, effects of fluorine doping on the structural properties of the CdO films deposited by ultrasonic spray pyrolysis, Sol. Energy Mater. Sol. Cells 91(2007), 1927-1933.

A. Nadarajah, M. E. Carnes, M. G. Kast, D. W. Johnson and S. W. Boettcher Aqueous Solution Processing of F-doped SnO2 Transparent Conducting Oxide Films Using a Reactive Tin(II) Hydroxide Nitrate Nanoscale Cluster, to be published in Chem. Mater. (2014).

N. G. Deshpande, J. C. Vyas and R. Sharma, Preparation and characterization of nanocrystalline tin oxide thin films deposited at room temperature, Thin Solid Films 516(2008), 8587-8593.

D. Miao, Q. Zhao, S. Wu, Z. Wang, X. Zhang and X. Zhao, Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films spray-deposited on glass substrates, J. Non-Crystall. Solids 356(2010), 2557-3561.

G. Brauer, J. Szczyrbowski and G. Teshner, Mid frequency sputtering -a novel tool for large area coating, Surf. Coat. Technol. 94-95(1997), 658-662.

V. N. Zhitomirsky, T. David, R. L. Boxman, S. Goldsmith, A. Verdyan, Y. M. Soifer and L. Rapoport, Properties of SnO2 coatings fabricated on polymer substrates using filtered vacuum arc deposition, Thin Solid Films 492 (2005), 187-194.

J. R. Brown, P. W. Haycock, L. M. Smith, A. C. Jones and E. W. Williams, Response behaviour of tin oxide thin film gas sensors grown by MOCVD, Sens. Actuators. B 63(2000), 109-114.

S. Boycheva, A. K. Sytchkova, M. L. Grilli and A. Piegari, Structural, optical and ... sputtered indium tin oxide films, Thin Solid Films 515 (2007), 8469-8473.

A. N. Banerjee, S. Kundoo, P. Saha and K. K. Chattopadhyay, Synthesis and Characterization of Nano-Crystalline Fluorine-Doped Tin Oxide Thin Films by Sol-Gel Method, J. Sol-Gel Sci. Technol. 28 (2003), 105-110.

W. Chen, D. Ghosh and S.W. Chen, large-scale electrochemical synthesis of SnO2 nanoparticles, J. Mater. Sci. 43(2008), 5291-5299.

J. H. Kim, K. A. Jeon, G. H. Kim and S.Y. Lee, Electrical, Structural, and Optical Properties of ITO Thin Films Prepared at Room Temperature by Pulsed Laser Deposition, Appl. Surf. Sci. 252, 4834-4837 (2006).

J. J. Berry, D. S. Ginley and P.E. Burrows, Organic light emitting diodes using a Ga:ZnO anode, Appl. Phys. Lett. 92(2008), ID 193304.

M. Oshima and K. Yoshino, Electron Scattering Mechanism of FTO Films Grown by Spray Pyrolysis Method, J. Electron. Mater. 39(2010), 819-82.

M. A. Yıldırım, Y. Akaltun and A. Ates, Characteristics of SnO2 thin films prepared by SILAR, Solid State Sci. 14(2012), 1282-1288.

A. F. Khan, M. Mehmood, M. Aslam and M. Ashraf, Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air, Appl. Surf. Sci. 256(2010., 2252-2258.

K. L. Chopra, S. Major and D. K. Pandya 1983,Transparent conductors—A status review Thin Solid Films 102 (1983), 1-46.

H. A. Mohamed, The effect of annealing and ZnO doping on optoelectronic properties of ITO thin films, J. Phys. D: Appl. Phys. 40 (2007), 4234-4240.

M. M. Hasan, A. S. M. A. Haseeb, R. Saidur and H. H. Masjuki, Effects of annealing treatment on optical properties of anatase TiO2 thin films, Int. J. Chem. Biomol. Eng. 1 (2008), 93-97.

J. Tauc, Amorphous and Liquid Semiconductors, (Plenum Press, New York, 1979).

T. S. Moss, Relations between the Refractive Index and Energy Gap of Semiconductors, Phys. Stat. Sol. B 131(1985), 415-427.

Y. Akaltun, M. A. Yıldırım, A. Ates and M. Yıldırım, The Relationship between Refractive Index-Energy Gap and the Film Thickness Effect on the Characteristic Parameters of CdSe Thin Films, Opt. Commun. 284(2011), 2307-2311.

L. Hannachi and N. Bouarissa, Band parameters for cadmium and zinc chalcogenide compounds, Physica B 404 (2009), 3650-3654.

S.Y. Kim, Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods, Appl. Opt. 35(1996), 6703-6707.

E. Marquez, A. M. Bernal-Oliva, J. M. Gonzalez-Leal, R. Prieto-Alcon, A. Ledesma, R. Jimenez-Garay and I. Martil, Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1-1.8 eV), Mater. Chem. Phys. 60(1999), 231-239.

Z. Z. You and G. J. Hua, Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique, Vacuum 83 (2009), 984-988.

A. De, P. K. Biswas and J. Manara, Study of annealing time on sol–gel indium tin oxide films on glass, Mater. Charact. 58 (2007), 629-636.

P. K. Biswas, A. De, N. C. Pramanika, P. K. Chakraborty, K. Ortner, V. Hock and S. Korder, Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol- gel indium tin oxide films on glass, Mater. Lett. 57 (2003), 2326-2332.

M. S. Reddy, K.T. R. Reddy, B.S. Naidu and P.J. Reddy, Optical –constants of polycrystalline CuGaTe2 films, Opt. Mater. 4(1995), 787-790.

C. H. L. Weijtens and P. A. C. Van loon, Influence of annealing on the optical properties of indium tin oxide, Thin Solid Films 196 (1991), 1-10.

A. Mosbah and M. S. Aida, Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films, J. Alloy. Compd 515 (2012),149-153.


Refbacks

  • There are currently no refbacks.



Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize