Analysis of the Response of Thermal Sensors in Adsorption Microcalorimetry


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Three different designs for adsorption calorimeters are presented, which use sensors based on the Seebeck effect. The noises of signals with respect to the baseline are evaluated on each one of the builded equipment and the detection limit of the thermal effects is expressed in µWatt. It was determined that the different designs and working conditions affect the baseline noise and the detection limit. Values of the noise in the baseline are between ± 100 µV and ± 0,5 µV and between 887,2 and 24 µWatt. These values allow making measures in the solid-gas interphase with very good precision.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Adsorption Calorimeter; Noise Baseline; Heat Flow; Seebeck Effect

Full Text:

PDF


References


S. J. Sircar, Excess properties and thermodynamics of multicomponent gas adsorption. J .Chem.Soc. Faraday Trans. 81 (1985), 1527-1540.
http://dx.doi.org/10.1039/f19858101527

J. A. Dunne, Rao, M., Sircar., Gorte R. J., Myers A. L., Calorimetric Heats of Adsorption and Adsorption Isotherms. 3. Mixtures of CH4 and C2H6 in Silicalite and Mixtures of CO2 and C2H6 in NaX, Langmuir 13 (1997) 4333-4341.
http://dx.doi.org/10.1021/la960984z

Hill T. L., Statistical Mechanics of Adsorption. V. Thermodynamics and Heat of Adsorption, J. Chem. Phys. 17 (1949) 520-535.
http://dx.doi.org/10.1063/1.1747314

J. A. Duna, R. Mariawala, M. Rao, S. Sircar, R. J. Gorte, A. L. Myers, Calorimetric Heats of Adsorption and Adsorption Isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on Silicalite. Langmuir, 12 (1996) 5888-5895.
http://dx.doi.org/10.1021/la960495z

Handy T. L., Sharma S. B., Spiewak B. E., Dumesik J. A., A Tian-Calvet heat-flux microcalorimeter for measurement of differential heats of adsorption, Meas. Sci. Technol., 4 (1993) 1350-1356.
http://dx.doi.org/10.1088/0957-0233/4/12/007

G. C. M. Meijer, Thermal sensors base don transistors, Sens. Actuators, 10 (1996) 117-139.

G. D. Nieveld, Thermopiles fabricated using silicon planar technology, Sens. Actuators, 3 (1983) 179 – 183.
http://dx.doi.org/10.1016/0250-6874(82)80019-x

P. M. Sarro, van herwaarden A.W., Silicon Cantilever beams fabricated by electrochemically controlled etching (ECE) for sensor applications, J. Electrochem. Soc., 133 (1986) 1724–1729.
http://dx.doi.org/10.1149/1.2109003

H. N. Norton, In Sensor and Analyzer Handbook; (Prentice-Hall: New Jersey, 1982).

H. N. Norton, In Handbook of Transducers for Electronic Measuring Systems (Prentice-Hall: New Jersey, 1969).

H. K. P. Neubert, In Instrument Transducers (Clarendon Press: Oxford, 1975).

P. H. Mansfield, In Electrical Transducers for Industrial Measurement (Butterworths: London, 1973).

P. Sydenham., In Handbook of Measurement Science (Ed.; Wiley: Chichester, 1983; Volume 2).

F. Bulnes, A. J Ramírez-Pastor., G. Zgrablich, Scaling Behavior of Adsorption on Patchwise Bivariate Surfaces. Langmuir, 23 (2007) 1264-1270.
http://dx.doi.org/10.1021/la062491s

R. R. Heikes, W. Ure, In Thermoelectricity: Science and Engineering (Interscience Publishers: New York, 1961).

P. M. Sarro, van Heraarden, A.W. Inhomogeneity effects in silicon thermopiles, In Proc. 2nd Sensors and Actuators Symp., Enschede, The Netherlands, 1 (1984) 129–135.

L. Onsager, Reciprocal relations in irreversible process II, Phys. Rev. 37 (1931) 2265-2274.
http://dx.doi.org/10.1103/physrev.38.2265

F. J Blatt, P. A. Schroeder, C. L. Foiles, D. Greig, In Thermoelectric Power of Metals (Plenum Press: New York, 1976).
http://dx.doi.org/10.1007/978-1-4613-4268-7

Barnard R. D. In Thermoelectricity in Metals and Alloys (Taylor and Francis Ltd.: London, 1972).

T. J. Quinn, In Temperature; (Academic Press: London, 1983).

H. J. Goldsmid, In Applications of Thermoelectricity (Butler and Tanner Ltd.: London, 1960).
http://dx.doi.org/10.1016/0160-9327(60)90085-5

T. H. Geballe, G. W. Hull, Seebeck effect in silicon, Phys. Rev. 98 (1955) 940–947.
http://dx.doi.org/10.1103/physrev.98.940

H. G. Kerkhoff, G. C. M. Meijer, An integrated electrothermal amplitude detector using the Seebeck effect, In Proc. ESSCIRC, Southampton, U. K., 1979; 31-33.

W. Hemminger, G. Höhne, In Grundlagen der Kalorimetrie, Verlag Chemie: Weinheim, (Germany, 1979).
http://dx.doi.org/10.1002/bbpc.19800840921

W. Langer, Ein Wärmeleitungs-Gasdruck-Kalorimeter und die simultane Messung von Isothermen und Wärmen der Adsorption von N2 an SiO2, (Dissertation, FB Chemie-Biologie, Universität Siegen, 1994).

Van Herwaarden, P. M. Sarro, Thermal sensors based on the Seebeck effect, Sens. Actuators A, 10 (1986) 321-346.
http://dx.doi.org/10.1016/0250-6874(86)80053-1

J. C. Moreno, L. Giraldo, Setups for simultaneous measurement of isotherms and adsorption heats. Rev. Sci. Instrum., 76 (2005) 1-8.
http://dx.doi.org/10.1063/1.1915522

M. Huertemendia, L. Giraldo, D. Parra, J. C. Moreno, Adsorption Microcalorimeter and its Software: Design for the Establishment of Parameters Corresponding to Different Models of Adsorption Isotherms. Inst. Sc. & Tech., 33 (2005) 645-660.
http://dx.doi.org/10.1080/10739140500311213

D. K. Steckler, R. N. Golderg, Y. B. Tewari, T. J. Buckley, High precision microcalorimetry: apparatus, procesures, and biochemical applications. J. Res. Natl. Bur. Stand. 91 (1986) 113-121.
http://dx.doi.org/10.6028/jres.091.018

G. Kegeles, The Heat of Neutralization of Sodium Hydroxide with Hydrochloric Acid. J. Am Chem, Soc. 62 (1940) 3230-3232.
http://dx.doi.org/10.1021/ja01868a095


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize