Synthesis and Structural Studies of Sol Gel Processed Nanopowders of Lead Doped Y2Ti2O7 Pyrochlores


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Pyrochlore-type lead doped yttrium titanate (Y2Ti2O7) nanoparticules were successfully synthesized by a sol gel method through the destabilization of colloidal solution (DCS) at a relatively low  temperature. The as-preparation samples were characterized using X-ray diffraction (XRD), Fourier-transform-Infrared spectroscopy (FT-IR) and Raman spectroscopy. The results show that doping with 10% of Pb2+ does not bring any structural change, however further Pb-doping ( 20% ≤ x ≤40% ) leads to formation of Y2Ti2O7 phase along with PbTiO3 phase, which indicates that the limit of solubility of Pb2+ in Y2Ti2O7 is  under 20%. The evaluated experimental value of this limit agrees with that calculated from the limiting radii ratio stabilization of the pyrochlore structure A2B2O7.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Sol-Gel Process; Pyrochlores Doping; Yttrium Titanate; XRD; Raman; FTIR

Full Text:

PDF


References


K. R. Whittle, G. R. Lumpkin, S. E. Ashbrook, Neutron diffraction and MAS NMR of cesium tungstate defect pyrochlores. J. Solid State Chem 179 (2006), 512–521.

S. A. Kramer, H. L. Tuller, A novel titanate-based oxygen ion conductor Gd2Ti2O7. Solid-state Ionics 82 (1995), 15-23.

C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince, Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores neutron rietveld analysis of disorder induced by Zr substitution. Journal of solid state Chemestry 117(1995), 108-121.

M. A. Subramanian, G. Aravandan, G. V. Subba Rao, Oxide pyrochlore. Progress in Solid State Chemestry 15 (1983), 55-143.

E. E. Erickesson, D. Gray, K. Taylor, R. T. Macaluso, L. A. Letard, G. S. Lee and J. Y. Chan, Synthesis, structure and dielectric characterization of Ln2Ti2-2xM2xO7 (Ln = Gd, Er; M = Zr, Sn, Si). Mater. Res. Bull 37(2002), 2077-2083.

C. R. Stanek, L. Minervini, R. W. Grimes, Non stoichiometry in A2B2O7 pyrochlores. J. Am. Ceram. Soc 85 (2002), 2792-2798.

A. Garbout, S. Bouattour, A. W. Kolsi, Synthesis, X-ray diffraction investigations and spectroscopic analysis of yttrium-substituted pyrochlore oxides Y2-2xB2xTi2O7 via a sol gel process. Journal of Crystal Growth 307(2007), 219-228.

K. G. Jasmeet, O. P. Pandey, K. Singh, Ionic conductivity, structural and thermal properties of pure and Sr2‏ +doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sciences 13 (2011), 1960-1966.

A. M. Srivastava, M. G. Brik, Comparative ab initio study of electronic, optic and chemical bonding properties of pyrochlores, Y2B2O7 (B=Ti4+, Sn4+). J . Lumin 130 (2010), 2368-2376.

J. B. Goodnough, R. N. Castellano, Defect pyrochlores as catalyst supports. Journal of solid state Chemestry 44(1982), 108-112.

P. P. Rao, S. J. Liji, K. R. Nair, New pyrochlore-type oxides in Ca–R–Ti–Nb–O system (R=Y, Sm or Gd)-structure, FT-IR spectra and dielectric properties. Materials Letters 54 (2004), 1924-1927.

R. C. Ewing, W. J. Weber, J. Lian, Nuclear waste disposal–pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and ‘‘minor’’ actinides. J. Appl. Phys. 95 (2004), 5949–5971.

S. Pace, V. Cannillo, J. Wu, D. N. Boccaccini , S. Seglem, A. R. Boccaccini, Processing of glass-pyrochlore composites for nuclear waste encapsulation. J. Nucl. Mater 341(2005), 12-18.

K. G. Jasmeet, O.P. Pandey, K. Singh, Ionic conductivity, structural and thermal properties of Ca2+doped Y2Ti2O7 pyrochlores for SOFC. International Journal of Hydrogen energy 37 (2012), 3857-3864.

N. Kim, C. P. Grey, Solid-state NMR study of the anionic conductor Ca-doped Y2Ti2O7. Dalton Trans 19 (2004), 3048-3052.

S. Kramer, M. Spears , H. L. Tuller, Conduction in titanate pyrochlores: role of dopants. Solid State Ionics 72 (1994), 59-66.

R. Kant, K. Singh, O. P Pandey, Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for SOFC application. Int .J. Hydrogen Energy 33 (2008), 455-462.

Z. Gao, Z. Mao, C. Wang, Z. Liu, Preparation and characterization of La1-xSrxNiyFe1-yO3-δ cathodes for low-temperature solid oxide fuel cells. Int .J .Hydrogen Energy 35 (2010), 12905-12910.

J. D. Ault, A. J. E. Welch, The yttrium oxide-titanium system. J. Acta Cryst 20 (1966), 410-412.

K. G. Jasmeet, O. P. Pandey, K. Singh, Ionic conductivity and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sciences 13 (2011), 1960 -1966.

J. K. GILL, O. P. Pandey, K. Singh, Role of sintering temperature on thermal, electrical and structural properties of Y2Ti2O7 pyrochlores. Int. J. Hydrogen Energy 36 (2011), 14943-14947.

A. L. Hector, A. L .Winggin, Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. Solid State Chem 177 (2004), 139 -145.

K. W. Li, H. Wang , H. Yan, J. Mol, Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals. Journal of Molecular Catalysis A:Chemical 249 (2006 ), 65-70.

Z.Tang, L. Zhou, L. Yang, F. Wang, A study on the structure transformation and luminescence of Eu(III) titanate nanotubes synthesized at various hydrothermal temperatures. J. Alloys Compd 481(2009), 704-709.

S. Bouattour, D. P. Ferreira, A. Hamdi, L. F. Vieira Ferreira, A. M. Botelho do Rego, Spectroscopic studies of mixed pyrochlore-oxide (Y/Gd)2Ti2O7 samples prepared via sol–gel and solid-state methodologies and calcined at different temperatures. Materials Chemistry and Physics 138(2013), 507-513.

Z. S. Chen,W. P. Gong, T. F. Chen, S. L. Li, Synthesis and characterization of pyrochlore-type yttrium titante nanoparticl by sol-gel method, Bull.Mater. Sc 34 (2011), 429-434.

A. Elbasset, F. Abdi, T. Lamcharfi, S. Sayouri, M. Aillerie, Synthesis and characterization of strontium doped barium titanate ceramics, (2013) International Review of Physics (IREPHY), 7 (3), pp. 287-293.

M. Maczaka, J. Hanuza, K. Hermanowics, A.F. Fluentes, K. Matsushira, Z. Hiroi, Temperature-dependent Raman scattering studies of the geometrically frustrated pyrochlores Dy2Ti2O7, Gd2Ti2O7 and Er2Ti2O7. Journal of Raman Spectroscopy 39(2008), 537-544.

A.F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Synthesis of disordered pyrochlore, A2Ti2O7 (A=Y, Gd and Dy), by mechanical milling of constituent oxides. Solid State Sciences 7 (2005), 343-353.

T.Ting-ting, W. Li-Xi, Z. Qi-tu, study on the composite and properties of Y2O3-TiO2 microwave dielectric ceramics. Journal of Alloys Compounds 486(2009), 606-609.

S. Kumar, H. C. Gupta, First principles study of zone centre phonons in rare-earth pyrochlore titanates (RE=Gd, Dy, Ho, Lu;Y). Vibrational spectroscopy 62 (2012), 180-187.

M. Mori, G. M. Tompsett, N. M. Sammes, E. Suda, Y.Takeda, Compatibility of GdxTi2O7 pyrochlores (1.72=x=2.0) as electrolytes in high-temperature solid oxide fuel cells. J. Solid State Ionic 158(2003), 79-90.

D.V. Westa, T. M. McQueena, Q. Huangb, R. J. Cavaa, Structural and magnetic properties of pyrochlore solid solutions (Y,Lu)2Ti2-x(Nb,Ta)xO7±y . Solid Stat Chem 181(2008), 1753-1758.

B. P. Mandal, N. Garg, S. M. Sharma, A.K. Tyagi, Preparation, XRD and Raman spectroscopic studies on new compounds Re2Hf2O7(Re = Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect-fluorite?. J. Solid State Chem 179(7) (2006), 1990–1994.

M. Glerup, O.F. Nielsen, F.W. Poulsen, The structure transformation from the pyrochlore structure A2B2O7, to the fluorite structure, AO2, Studied by Raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry 160 (2001), 25-32.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32 (1976), 751–767.

J. A. Alonso, E. Mzayek, I. Rasines, M. Ventanilla, Preparation and x_ray diffraction study of the pyrochlores CdLn(TiSb)O7 (Ln=Nd, Gd, Yb) and Na0.5 Ln1.5 (TiSb)O7 (Ln=Nd, Sm, Gd, Dy, Yb) . Inorganica Chimica Acta,140 (1987), 145-146.

N. Dharuman, L. John Berchmans, Low temperature synthesis of nano- cristalline gadolinium titanate by molen salt route. Ceramics International 39 (2013), 8767-8771.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize