Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Elevated Temperature on Harmonic Interlaminar Shear Stress in Graphite/Epoxy FRP Simply Supported Laminated Thin Plate Using Finite Element Modeling


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i8.19468

Abstract


Graphite/Epoxy Fiber Reinforced Polymer (FRP) plates are used widely due to their high strength to weight ratio. Current work is concerned about investigating the harmonic interlaminar shear stresses existing between laminates in a simply supported composite Graphite/Epoxy FRP plate under elevated temperatures and for different fiber orientation schemes using finite element modeling. Interlaminar shear stress which is affected by temperature plays a major role in composite material delamination. The simply supported composite plate under study consists of eight laminated layers with different orientation schemes ([0°]8, [0°/15°]4, [0°/30°]4, [0°/45°]4, [0°/60°]4, [0°/75°]4, and [0°/90°]4). Modal analysis is performed to find the natural frequencies for all fiber orientations and temperatures considered. However, harmonic analysis is carried out to study the transverse deflection and interlaminar dynamic shear stress for orientation schemes and temperatures considered at the interfacial of the 7th ply. It is found that increasing temperature leads to slight drop in natural frequency at each orientation scheme but leads to higher deflection and shear stress. Furthermore, it is observed that orientation scheme [0o/45o]4 is the best case for all the temperatures considered since minimum transverse deflection and interfacial shear stress are obtained for almost all the driving frequency range.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Composite; Fiber-Reinforced; Interlaminar Shear Stress; Temperature; Transverse Deflection

Full Text:

PDF


References


Al-Huniti Naser, Al-Faqs Fadi and Abu Zaid Osama Finite element dynamic analysis of laminated viscoelastic structures, Applied Composite Materials,8 2010-4: Vol. 17. - pp. 405-414.
https://doi.org/10.1007/s10443-010-9129-z

Soufeiani, L., Ghadyani, G., Hong Kueh, A. B., & Nguyen, K. T. Q. (2017). The effect of laminate stacking sequence and fiber orientation on the dynamic response of FRP composite slabs. Journal of Building Engineering, 13, pp.41–52.
https://doi.org/10.1016/j.jobe.2017.07.004

Sadarang J. et al., Dynamic analysis for delamination detection in carbon fiber composite beam, IOP Conference Series: Materials Science and Engineering.- [s.l.]: Institute of Physics Publishing, 2018.- Vol. 402. pp.1-6
https://doi.org/10.1088/1757-899x/402/1/012143

Jiang, Z., Wen, H. M., & Ren, S. L. (2017). Modeling delamination of FRP laminates under low velocity impact. IOP Conference Series: Materials Science and Engineering, 242(1). Pp.1-7.
https://doi.org/10.1088/1757-899x/242/1/012088

Ansari, M. M., & Chakrabarti, A. (2017). Impact behaviour of GFRP and Kevlar/epoxy sandwich composite plate: Experimental and FE analyses. Journal of Mechanical Science and Technology, 31(2), pp.771–776.
https://doi.org/10.1007/s12206-017-0128-y

Tbatou, T., El Youbi, M., Dynamic and Structural Study of a RC Building Braced by FRP Composite Materials, (2020) International Review of Civil Engineering (IRECE), 11 (1), pp. 1-9.
https://doi.org/10.15866/irece.v11i1.16991

Formisano, A., Galzerano, B., Durante, M., Marino, O., Liguori, B., Mechanical Response of Short Fiber Reinforced Fly Ash Based Geopolymer Composites, (2018) International Review of Mechanical Engineering (IREME), 12 (6), pp. 485-491.
https://doi.org/10.15866/ireme.v12i6.14826

Shen Yiou et al., Dynamic mechanical analysis on delaminated flax fiber reinforced composites Materials.-[s.l.]: MDPI AG, 8 1, 2019.- 16: Vol. 12. pp. 1-15.
https://doi.org/10.3390/ma12162559

Filippatos Angelos, Langkamp Albert and Gude Maik Influence of gradual damage on the structural dynamic behaviour of composite rotors: Simulation assessment, Materials.-[s.l.]: MDPI AG, 12 3, 2018.- 12: Vol. 11. pp. 1-16.
https://doi.org/10.3390/ma11122453

Aveiga David and Ribeiro Marcelo L. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials, Mathematical Problems in Engineering.- [s.l.]: Hindawi Limited, 2018.- Vol. 2018, pp. 1-9.
https://doi.org/10.1155/2018/1861268

De Luca Alessandro and Caputo Francesco A review on analytical failure criteria for composite materials, AIMS Materials Science.-[s.l.]: AIMS Press, 2017.-5: Vol. 4- pp. 1165-1185.
https://doi.org/10.3934/matersci.2017.5.

Cruz Martha L.Sánchez, Carrillo Julián and De Almeida Sergio F.Muller Effect of thermal residual stresses on buckling and post-buckling properties of laminated composites Perimetrally reinforced, Latin American Journal of Solids and Structures- [s.l.]: Brazilian Association of Computational Mechanics, 2016.- 3: Vol. 13.-pp. 435-455.
https://doi.org/10.1590/1679-78251828

Fazilati Jamshid Stability analysis of variable stiffness composite laminated cylindrical panels containing delamination, Journal of Reinforced Plastics and Composites.-[s.l.]: SAGE Publications Ltd, 2 1, 2018.- 3: Vol. 37. - pp. 201-213.
https://doi.org/10.1177/0731684417739988

Das R. R., Singla A. and Srivastava S. Thermo-mechanical Interlaminar Stress and Dynamic Stability Analysis of Composite Spherical Shells, Procedia Engineering.-[s.l.]: Elsevier Ltd, 2016.- Vol. 144. - pp. 1060-1066.
https://doi.org/10.1016/j.proeng.2016.05.058

Das R. R. and Singla A. Dynamic Stability and Interlaminar Stress Analysis of Cylindrical Shells Subjected to Elevated Thermal Field, Procedia Engineering.- [s.l.]: Elsevier Ltd, 2016.- Vol. 144.- pp. 468-473.
https://doi.org/10.1016/j.proeng.2016.05.157

Gawali, S., Suryawanshi, V., Bojage, P., Crack Analysis of Fixed Support Fibre Glass Composite Beam Based on Natural Frequencies, (2017) International Review of Mechanical Engineering (IREME), 11 (7), pp. 505-512.
https://doi.org/10.15866/ireme.v11i7.12865

Tabiei Ala and Zhang Wenlong Composite laminate delamination simulation and experiment: A review of recent development, Applied Mechanics Reviews.- [s.l.]: American Society of Mechanical Engineers (ASME), 5 1, 2018.- Vol. 70., pp. 1-23.
https://doi.org/10.1115/1.4040448

Huzni S., et al., Finite element modeling of delamination process on composite laminate using cohesive elements, International Journal of Automotive and Mechanical Engineering.-[s.l.]: Universiti Malaysia Pahang, 2013.- 1: Vol. 7.-pp.1023-1030.
https://doi.org/10.15282/ijame.7.2012.18.0083

Arafat, H. N., & Nayfeh, A. H. (2004).Combination Internal Resonances in Heated Annular Plates. Nonlinear Dynamics, 37(4),285–306.
https://doi.org/10.1023/b:nody.0000045542.48960.33

Chernin, L., Volokh, K. Y. (2004).Simulation of thin film delamination under thermal loading. CMC - Computers Materials & Continua, 1(3), pp.259-273.
https://doi.org/10.3970/cmc.2004.001.259

Benli, S., Sayman, O. (2011). The Effects of Temperature and Thermal Stresses on Impact Damage in Laminated Composites. Mathematical and Computational Applications, 16(2), pp. 392–403.
https://doi.org/10.3390/mca16020392

Sicot, O., Gong, X. L., Cherouat, A., Lu, J. (2003). Determination of Residual Stress in Composite Laminates Using the Incremental Hole-drilling Method. Journal of Composite Materials, 37(9), pp.831–844.
https://doi.org/10.1177/002199803031057

Stoykov S. and Margenov S. Nonlinear vibrations of 3D laminated composite beams, Mathematical Problems in Engineering.- [s.l.]: Hindawi Publishing Corporation, 2014.- Vol. 2014. pp. 1-14.
https://doi.org/10.1155/2014/892782

Wu Helong, Yang Jie and Kitipornchai Sritawat Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Composite Structures.- [s.l.]: Elsevier Ltd, 2 15, 2017.- Vol. 162.pp.244-254.
https://doi.org/10.1016/j.compstruct.2016.12.001

Li Xiangyang and Yu Kaiping Vibration and acoustic responses of composite and sandwich panels under thermal environment Composite Structures-[s.l.]: Elsevier Ltd, 11 1, 2015.- Vol. 131. - pp. 1040-1049.
https://doi.org/10.1016/j.compstruct.2015.06.037

Yüksel Yusuf Ziya and Akbaş Şeref Doğuşcan Free Vibration Analysis of a Cross-Ply Laminated Plate in Thermal Environment International Journal Of Engineering & Applied Sciences, 10 20, 2018.- 3: Vol. 10.- pp. 176-189.
https://doi.org/10.24107/ijeas.456755

Makhecha, D. P., Ganapathi, M., Patel, B. P. (2001). Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory. Composite Structures, 51(3), pp. 221-236.
https://doi.org/10.1016/s0263-8223(00)00133-1

Gu, H., Chattopadhyay, A., Li, J., & Zhou, X. (2000). A higher order temperature theory for coupled thermo-piezoelectric-mechanical modeling of smart composites. International Journal of Solids and Structures, 37(44), pp.6479–6497.
https://doi.org/10.1016/s0020-7683(99)00283-8

Tahani, M., Nosier, A. (2003). Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading. Composite Structures, 60(1), pp. 91–103.
https://doi.org/10.1016/s0263-8223(02)00290-8


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize