Open Access Open Access  Restricted Access Subscription or Fee Access

Extraction of Natural Fibers by High-Speed Blender to Produce Cellulose Sheet Composite


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v13i12.17586

Abstract


This research reports the extraction of cellulose obtained from natural fibers. Agave cantala leaf is the resource of the cellulose. The extraction process of the fibers has been carried out in two stages; the first one is the immersion of the fiber in a chemical solution, and the second one is a mechanical process using a high-speed blender. The high-speed blender has been set at 7500 RPM, with processing time varies in 15, 30, and 45 minutes. The homogenized size of cellulose has been processed using ultrasonic homogenizer for 60 minutes. Cellulose sheet has been prepared by casting homogenous solution at temperature of 90 °C in 4 hours in an oven until dry. The result of this process is a cellulose sheet, with a thickness of approximately 40 µm. Cellulose Sheet Composite has been produced by the addition of unsaturated polyester resin as a matrix that has been carried out through a vacuum infusion process. The result shows that the optimum time of the high-speed blending process is 15 minutes, which is shown by the highest mechanical properties compared to other processing time. The Scanning Electron Microscopy indicates that the cellulose fibers has a good bonding with the unsaturated polyester matrix. Further characterization has been performed on the Cellulose Sheet Composite using X-ray diffraction, Fourier transforms infrared spectroscopy, and Thermal gravimetric analyzer.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Cellulose Extraction; High-Speed Blender; Vacuum Infusion; Cellulose Sheet Composite

Full Text:

PDF


References


Yudhanto, F., Jamasri, J., Rochardjo, H., Physical and Thermal Properties of Cellulose Nanofibers (CNF) Extracted from Agave Cantala Fibers Using Chemical-Ultrasonic Treatment, (2018) International Review of Mechanical Engineering (IREME), 12 (7), pp. 597-603.
https://doi.org/10.15866/ireme.v12i7.14931

Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P, Saravanakumar, S.S., 2019., Isolation and characterization of cellulose fibers from Thespesia populneabarks: A study on physicochemical and structural properties, International Journal of Biological Macromolecules, Volume 129, pp 396-406.
https://doi.org/10.1016/j.ijbiomac.2019.02.044

Poletto, M., Pistor, V., & Zattera, A. J., 2013. Structural characteristics and thermal properties of native cellulose. In Cellulose-fundamental aspects. IntechOpen.
https://doi.org/10.5772/50452

Sosiati, H., Wijayanti, D. A., Triyana, K., & Kamiel, B. 2017. Morphology and crystallinity of sisal nanocellulose after sonication. In AIP Conference Proceedings (Vol. 1877, No. 1, p. 030003). AIP Publishing.
https://doi.org/10.1063/1.4999859

Rizal, S., Ikramullah, Gopakumar, D., Thalib, S., Huzni, S., & Abdul Khalil, H., 2018. Interfacial Compatibility Evaluation on the Fiber Treatment in the Typha Fiber Reinforced Epoxy Composites and Their Effect on the Chemical and Mechanical Properties. Polymers, 10(12), 1316.
https://doi.org/10.3390/polym10121316

Yudha, V., Rochardjo, H. S. B., Jamasri, J., Widyorini, R., Yudhanto, F. and Darmanto, S., 2018. Isolation of cellulose from salacca midrib fibers by chemical treatments. In IOP Conference Series: Materials Science and Engineering (Vol. 434, No. 1, p. 012078). IOP Publishing.
https://doi.org/10.1088/1757-899x/434/1/012078

Abdal-Hay, A., Suardana, N. P. G., Choi, K. S., & Lim, J. K., 2012. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing, 13 (7):1199-1206.
https://doi.org/10.1007/s12541-012-0159-3

Hestiawan, H., Jamasri, Kusmono, 2016. A Preliminary Study: Influence of Alkali Treatment on Physical and Mechanical Properties of Agel Leaf Fiber (Corypha gebanga). In Applied Mechanics and Materials (Vol. 842, pp. 61-66). Trans Tech Publications.
https://doi.org/10.4028/www.scientific.net/amm.842.61

Liu, Y., Wang, J., Zheng, Y., & Wang, A., 2012. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology, Chemical Engineering Journal, 184, 248-255.
https://doi.org/10.1016/j.cej.2012.01.049

Yudhanto, F., Jamasri., & Rochardjo, H. S. B., 2018. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. IOP Conference Series: Materials Science and Engineering, 352(1): 012002. IOP Publishing.
https://doi.org/10.1088/1757-899x/352/1/012002

Balaji, M. S., & Kalaichelvan, K., 2013. Influence of Aramid, cellulose and Acrylic fibers in NAO brake pad-effect on thermal stability and frictional characteristics. SAE Technical Paper, 2013-26-0081.
https://doi.org/10.4271/2013-26-0081

Ho, S. C., Lin, J. C., & Ju, C. P., 2005. Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material. Wear, 258(5-6), 861-869.
https://doi.org/10.1016/j.wear.2004.09.050

Chinga-Carrasco, G., 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale research letters, 6(1), 417.
https://doi.org/10.1186/1556-276x-6-417

Priaroggia, P. G. 1986., U.S. Patent No. 4,602,121. Washington, DC: U.S. Patent and Trademark Office.

Kamei, K., & Yoshida, S., 2000., U.S. Patent No. 6,011,887. Washington, DC: U.S. Patent and Trademark Office.

Kohman, G.T. 1939., Cellulose as an insulating material, Industrial & Engineering Chemistry, 31(7), 807-817.
https://doi.org/10.1021/ie50355a005

Bledzki, A. K., & Gassan, J. 1999. Composites reinforced with cellulose based fibres, Progress in polymer science, 24(2), 221-274.
https://doi.org/10.1016/s0079-6700(98)00018-5

Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal, 29 (10):786-794.
https://doi.org/10.1177/004051755902901003

Gibson, R. F., 2012, Principles of composite material mechanics. CRC press, Taylor & Francis Group, LLC.

Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste, Journal of Materials Physics and Chemistry, 2(1), 1-8.

Xie, J., Hse, C. Y., Cornelis, F., Hu, T., Qi, J., & Shupe, T. F. 2016., Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate polymers, 151, 725-734.
https://doi.org/10.1016/j.carbpol.2016.06.011

Chen, P., Nishiyama, Y., Putaux, J. L., & Mazeau, K., 2014. Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation, Cellulose, 21(2), 897-908.
https://doi.org/10.1007/s10570-013-0053-x

Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B., & Coelho, M. A. Z. 2010. Effect of chemical treatments on properties of green coconut fiber, Carbohydrate Polymers, 79(4), 832-838.
https://doi.org/10.1016/j.carbpol.2009.10.005

Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen V & Krausz, P. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres, Composites Part A: Applied Science and Manufacturing, 39 (3):514-522.
https://doi.org/10.1016/j.compositesa.2007.12.001

Jonoobi, M., Harun, J., Mishra, M., & Oksman, K. 2009. Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber, BioResources, 4(2), 626-639.

Alemdar, A., & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls, Bioresource technology, 99(6), 1664-1671.
https://doi.org/10.1016/j.biortech.2007.04.029

Sun, R. C., Tomkinson, J., Wang, Y. X., & Xiao, B. 2000. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction, Polymer 41(7), 2647-2656.
https://doi.org/10.1016/s0032-3861(99)00436-x

Movva, M., & Kommineni, R., 2017. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites, Materials Research Express, 4(4), 045014.
https://doi.org/10.1088/2053-1591/aa6863

Movva, M., & Kommineni, R., 2019. Effect of Green Gram Husk Nanocellulose on Banana Fiber Composite, Journal of Natural Fibers, 16(2), 287-299.
https://doi.org/10.1080/15440478.2017.1414658

Rosli, N. A., Ahmad, I., & Abdullah, I. 2013. Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre, BioResources, 8(2), 1893-1908.
https://doi.org/10.15376/biores.8.2.1893-1908

Saurabh, C. K., Mustapha, A., Masri, M. M., Owolabi, A. F., Syakir, M. I., Dungani, R., Abdul Khalil, H. P. S. 2016. Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. Journal of Nanomaterials, 2016, 3.
https://doi.org/10.1155/2016/4024527

Anwar, A., Osman, M., Influence of Simulated Space Hazards on Polyimide ArtilonTM Type Used in Space Applications, (2016) International Review of Aerospace Engineering (IREASE), 9 (6), pp. 195-199.
https://doi.org/10.15866/irease.v9i6.10041

Anwar, A., Osman, M., Elfiky, D., Hassan, G., Performance Evaluation of Selected Irradiated Space Structure Composites Manufactured by the Hand Lay-Up Method, (2018) International Review of Aerospace Engineering (IREASE), 11 (4), pp. 155-161.
https://doi.org/10.15866/irease.v11i4.13726

Kumar, R., Kumari, S., Surah, S. S., Rai, B., Kumar, R., Sirohi, S., & Kumar, G., 2019. A simple approach for the isolation of cellulose nanofibers from banana fibers. Materials Research Express, 6(10), 105601.
https://doi.org/10.1088/2053-1591/ab3511

Ahmed, M. J., Balaji, M. S., Saravanakumar, S. S., Sanjay, M. R., & Senthamaraikannan, P., 2019. Characterization of Areva javanica fiber–A possible replacement for synthetic acrylic fiber in the disc brake pad. Journal of Industrial Textiles, 49(3), 294-317.
https://doi.org/10.1177/1528083718779446

Ilyas, R. A., Sapuan, S. M., & Ishak, M. R., 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate polymers, 181, 1038-1051.
https://doi.org/10.1016/j.carbpol.2017.11.045

Syafri, E., Kasim, A., Abral, H., & Asben, A., 2019. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. Journal of Natural Fibers, 16(8), 1145-1155.
https://doi.org/10.1080/15440478.2018.1455073

Neto, W. P. F., Mariano, M., Da Silva, I. S. V., Silvério, H. A., Putaux, J. L., Otaguro, H., ... & Dufresne, A., 2016. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydrate polymers, 153, 143-152.
https://doi.org/10.1016/j.carbpol.2016.07.073

Kumar, R., Kumari, S., Surah, S. S., Rai, B., Kumar, R., Sirohi, S., & Kumar, G., 2019. A simple approach for the isolation of cellulose nanofibers from banana fibers. Materials Research Express, 6(10), 105601.
https://doi.org/10.1088/2053-1591/ab3511

Meng, F., Wang, G., Du, X., Wang, Z., Xu, S., & Zhang, Y., 2019. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering, 160, 341-347.
https://doi.org/10.1016/j.compositesb.2018.08.048

Xie, J., Hse, C. Y., Cornelis, F., Hu, T., Qi, J., & Shupe, T. F. 2016. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate polymers, 151, 725-734.
https://doi.org/10.1016/j.carbpol.2016.06.011


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize