Potential of Microalgae Tetraselmis Chuii as Feedstock for Biodiesel Application

P. Kumaran(1*), N. Saifuddin(2), S. Janarthanan(3)

(1) Centre for Renewable Energy, University Tenaga Nasional, Malaysia
(2) Centre for Renewable Energy, University Tenaga Nasional, Malaysia
(3) Centre for Renewable Energy, University Tenaga Nasional, Malaysia
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Biodiesel production from microalgae has attracted major interest recently as a renewable energy which is capable of reducing the effect of global warming at same time provide sustainable energy source. This study determines the potential of microalgae species, Tetraselmiss chuii lipid as a biodiesel feedstock. Fatty acid profiling of the biodiesel, obtained from T.chuii lipid showed higher content of saturated fatty acids (SFA) 50.1% than monounsaturated fatty acids (MUFA) 31.6% and polyunsaturated fatty acids (PUFA) 17.5%. The biodiesel produced was also characterized in terms of kinematic viscosity, cetane number, iodine value, degree of unsaturation and higher heating value. The quality of the biodiesel produced from T.chuii lipid were a kinematic viscosity of 3.2 mm2/s, a cetane number of 63.7, an iodine value of  59.3 g I2/ 100g-1, a degree of unsaturation of 66.6% and a higher heating value of 41.3 MJ/kg. The result obtained from this study indicated that the biodiesel produced from T.chuii lipid complies with the US Standard (ASTM 6751) and European Standard (EN14214)
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Global Warming; Renewable Energy; Biodiesel; Microalgae

Full Text:

PDF


References


Mohamed, A. R. and Lee, K.T. 2006. Energy for sustainable development in Malaysia: Energy policy and alternative energy, Energy Policies. 34: 2388-2397.

Ong, H. C. Mahlia, T. M. I. and Masjuki, H. H. 2011. A review on energy scenario and sustainable energy in Malaysia, Renewable and Sustainable Energy Reviews. 15: 639–647.

Ali, O.M., Mamat, R., Faizal, C.K.M., Palm biodiesel production, properties and fuel additives, (2012) International Review of Mechanical Engineering (IREME), 6 (7), pp. 1573-1580.

Musharraf, S. G. Ahmed, M. A. Zehra, N. Kabir, N. Choudhary, I. and Rahman, A. 2012. Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis, Chemistry Central Journal. 6: 149.

Sivaramakrishnan, K and Ravikumar, P. 2012. Determination of cetane number of biodiesel and its influence on physical properties, ARPN Journal of Engineering and Applied Sciences. 7: 2.

Shakeel F, Ramadan W, Shafiq S (2009) Solubility and Dissolution Improvement of Aceclofenac using Different Nanocarriers. J Bioequiv Availab 1: 039-043.

Pakdee, W., Pattamaprom, C., Phanumnuay, S., Effects of incomplete transesterification reaction of palm oil biodiesel on fuel quality and engine performance, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 673-678.

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances. 25: 294-306.Culture collection of Algae and Protozoa. http://www.ccap.ac.uk/media/documents/f2.pdf. accessed on 10 – 10 – 2009

Guan, H. H. Feng, C. Dong, W. Xue, W. Z. and Gu, C. 2010. Biodiesel production by microalgal biotechnology. Applied energy, 87: 38-46.

Miao, X. and Wu, Q.Y. 2006. Biodiesel Production from Heterotrophic Microalgal Oil, Bioresource Technology. 97: 841.

Ghezelbash, F. Farboodnia, T. Heidari, R. and Agh, N. 2008. Biochemical Effect of Different Salinities and Luminance on Green Microalagae Tetraselmis chuii. Research Journal of Biological Sciences, 3(2): 217-221.

Rauquiro, A. A. M.C. Maria, L. K. and Silvio, J. M. 2004. Urban Secondary Sewage: an Alternative Medium for the Culture of Tetraselmis chuii (Prasinophyceae) and Dunaliella viridis (Chlorophyceae), An International Journal Brazilian Archieves of Biology and Technology, 47 (3): 451-459.

Grierson, S. Strezov, V. Bray, S. Mummacari, R. Danh, L.T. and Foster, N. 2012. Assessment of Bio-oil Extraction from Tetraselmis chuii Microalgae Comparing Supercritical CO2, Solvent Extraction and Thermal Processing, Energy Fuels. 26: 248 -255.

Duerr E.O., Molnar A., Sato V., (1998), Cultured microalgae as aquaculture feeds, J. Mar. Biotechnol., 6, 65–70.

Semesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47.

Barsanti, L. and Gualtieri, P. 2006. Algae Anatomy, Biochemistry, and Biotechnology. New York: Taylor & Francis.

Mendes, A. A., E.B. Pereira, and H.F. de Castro. 2006. “Effect of the Enzymatic Hydrolysis Pretreatment of Lipids-Rich Wastewater on the Anaerobic Biodigestion”. Biochem. Eng. J. 32: 185-190.

Krisnangkura, K. A. 1986. Simple method for estimation of cetane index of vegetable oil methyl esters. J AmOil Chem Soc 63:552–553.

Erika, C. F. Debora, B.N. Eduardo, J.L. and Telma, T.F. 2010. Microalgae as Feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biodiesel quality. J Chem Technology Biotechnology, 85: 395 – 403.

Bondioli, P. Bella, L. D. Rivolta, G. Zittelli, G. C. Bassi, N. Rodolfi, L. Casini, D. Prussi, M. Chiaramonti, D. and Tredici, M. R. 2012. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 114: 567 – 572.

Anne, C. V and Jean, C. M. 1993. Fatty acids from 28 Marine microalgae species. Phytochemistry. 34(6): 1521- 1533.

El-Moneim, A. M. R. A. Emad, A.S. and Sanaa, M.M.S. (2010). Enhancement of Biodiesel Production from Different Species of Microalgae. Grasas Y Aceites, 61(4): 416-422.

Gouveia, L. and Oliveira, A. C. 2009. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnology. 36: 269 – 74.

Ramos, M. J. Fernandez C. M. Casas, A. Rodriguez, L. and Perez, A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties, Bioresource Technology. 100: 261 – 8.

Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technology, 86: 1059 – 70.

Imahara, H. Minami, E. Saka, S. 2006. Thermodynamic study on cloud point of biodiesel with its fatty acid composition, Fuel, 85:1666–1670.

Hu, Q. Sommerfeld, M. Jarvis, E. Ghirardi, M. Posewitz, M. Seibert, M. Darzins, A. 2008. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. The Plant Journal, 54: 621-639.

Meher, L. C. Vidya, S. D. and Naik, S. N.(2006). Technical aspects of biodiesel production by transesterification - A Review, Renewable Sustainable Energy Review. 10: 248–268.

Chen, Y. H. Huang, B. Y. Chiang, T. H. Tang, T. C. 2012. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel, 94: 270 – 273.

Brevard Biodiesel. Stability of Biodiesel and the Iodine Value. http://www.brevardbiodiesel.org/iv.html. accessed on 28 – 05 – 2012.

Knothe, G. (2001). Historical Perspective on Vegetable Oil-Based Diesel Fuel. Inform 12: 1103 – 1107.

Knothe, G. (2005b). Viscosity of Biodiesel, In: The Biodiesel handbook, Knothe, G. Krahl, J. and Gerpen, J. V. pp. 81 – 82 AOCS Press, Campaign, Illinois, USA.

Sanli, H. Canakci, M. Alptekin, E. 2013. Predicting the higher heating values of waste frying oils as potential biodiesel feedstock, Fuel. 115: 850 – 854.

Biomass Energy Data Book. U S. Energy Department. Oak Ridge National Library http://cta.ornl.gov/bedb. accessed on 20 – 07 – 2012.

Moazami, N. Ranjbar, R. Ashori, A. Tangestani, M. and Nejad, A.S. 2011. Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island, Biomass and Bioenergy. 35(5) :1935 - 1939.

Xu, H. Miao, X. Wu, Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotropic growth in fermenters, Journal of Biotechnology, 126 (4): 499 – 507.

Jorge, M.S. Juan, E.C.G. and Marta H. F. H. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana, Biomolecular Engineering. 20: 237-242.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize