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Abstract – This paper introduces a method for building a real-time simulation model with 
adjustable user-selected parameters. The proposed design process model consists of eight steps 
with four decision points. Parameterization is a technique enabling real-time simulation with 
different combinations of parameters. Currently, there is no unique way to incorporate user input 
and switch between model combinations. The proposed method is presented in the form of a 
flowchart. Based on the data, a 3D design of the model was constructed. Two alternative 
approaches were introduced to construct a parameterized real-time simulation model with user 
inputs. The approach used was selected based on the number of parameterized specifications. The 
feasibility of each case was analyzed analytically and by simulation. Finally, a version of the 
model was selected based on the given initial requirements. To illustrate the developed approach, 
an excavator model was selected for parameterization. In the excavator model, two parts are 
considered to have adjustable parameters: the bucket and the hydraulics. Each part has three 
options that can be selected by users. The approach enables easy adaptability of user-generated 
parameter inputs, thus permitting evaluation of multiple scenarios, while simultaneously 
maintaining realistic representation. Copyright © 2019 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
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Nomenclature 
A Area 
CAD Computer aided design 
Fb Bucket weight 
Fd Dipper arm weight 
Fh Hydraulic force 
Fp Force generated by the accumulated sand 

particles in the bucket 
Ixx, Iyy, Izz Moments of inertia 
L1, L2, L3 Lengths of different parts of the excavator 
Mb Moment generated by FB 
mb Mass of the large bucket 
Md Moment generated by Fd 
md Mass of the dipper arm 
Mh Moment generated by Fh 
Mp Moment generated by Fp 
mp Mass of the accumulated sand particles in 

the bucket 
MT Equivalent moment 
Ph Hydraulic pressure 
XML Extensible Markup Language 

I. Introduction 
Dynamic simulation has proven to be a valuable tool; 

for this reason, it is commonly implemented to a number  

 
of product processes. To evaluate the performance of a 
machine using computerized methods, the equations of 
motion must be formulated and solved. Several studies 
on how to write and solve equations of motion for 
multibody system dynamics can be found in the literature 
[1]-[4]. In the design and appraisal of industrial vehicles, 
a simulation model can significantly reduce required 
design time and the cost of prototypes [5], [6]. When 
considering the dynamic performance of machines, it is 
important to note, however, that the operators’ experience 
often plays an important role. Nevertheless, most 
simulation studies have focused on modelling methods, 
whereas studies that account for the influence of the 
operator have received little attention. The user can be 
given more consideration by employing real-time 
simulation of dynamic systems. When using a real-time 
simulator, users must feel as if they are operating a real 
machine, which can be achieved only if the real-time 
simulation model is accurate and couples the different 
engineering areas: such as hydraulics, pneumatics, and 
electronics. Currently, however, such real-time models 
are usually case-specific and thus tailored to specific 
applications. Furthermore, the development of such real-
time models is labor-intensive and incurs considerable 
costs. The problem of high cost can be mitigated using a 
real-time simulation approach based on multibody 
system dynamics. Real-time simulation in multibody 
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systems has been studied in a number of research areas 
such as aviation and industrial vehicles [7]-[9], hybrid 
vehicles [10], the automotive industry [11], four-bar 
mechanisms, and flexible multibody systems [12], [13].  

However, increased usage of real-time simulation has 
been limited, because hours of work are needed to build a 
model and it may not guarantee in useful results [14].  

The problem of the high cost and high-specificity of 
current machine simulation approaches can be addressed 
by developing adjustable physics-based, real-time, 
simulator-driven processes for product development.  

This idea can be accomplished, in practice, by 
developing a toolset that will allow users to access 
machine research and development. This can be 
accomplished, in practice, through virtual worksites 
providing fully configurable, real-time, virtual 
prototyping. From a system engineering point of view, a 
multi-step approach is required for the design and 
construction of a product. First, the problem and the 
requirements of any possible solution are identified.  

Then, actions to achieve the target are introduced in 
steps, followed by the respective analysis of each step 
[15]. The analysis steps assess whether the constructed 
product meets the requirements at each step, and 
comments on the feasibility of the chosen approach or 
the desired requirements. A feasible product development 
procedure should be generic and modifiable to suit the 
final product [16], [17]. Despite numerous studies on 
product development, constructing generic models in 
different fields, and the utilization of multibody system 
simulation, limited attention has been paid to interaction 
with users during the design phase and provision of 
simulation models with adjustable parameters. [18]-[21]  

The objective of this paper is to introduce a method 
for building a real-time simulation model with adjustable 
parameters. The design steps are presented in the format 
of a flowchart. An excavator model is selected as a case 
study to be parameterized. Using the presented approach 
to develop simulation models, parameters can be selected 
based on different operation scenarios. By extending the 
applicability of the real-time methodology, the approach 
allows the construction of system simulations that 
previously were prohibitively difficult to analyze or 
required extensive effort to update the real-time 
simulation model. As such, this research seeks to address 
techniques to generate feasible real-time simulation 
models with adjustable parameters.  

The structure of the paper is as follows: Section two 
explains how to construct a flowchart to illustrate the 
design steps of a parameterized real-time simulation 
model. Section three introduces a numerical case 
example and the feasibility analysis. Section four details 
the differences between the two techniques and their 
advantages and disadvantages. Conclusions are presented 
in the final section. 

II. Methods 
To create a parameterized real-time simulation model 

of an industrial vehicle, a general design flowchart is 

introduced as depicted in Fig. 1. The design process 
consists of eight steps and four decision points. 

II.1. Step 1: Primary Requirements 

In the parameterization, there is a base model to which 
the other parameterized parts are added. To be able to 
build a parameterized model, several primary 
requirements must be met, and some fundamental data 
must be provided. The requirements can be divided into 
three major groups, the first of which are requirements 
related to the vehicle, for example, data about the mass, 
inertia, and geometry of the vehicle parts. The second 
group is environment requirements. The interaction 
between the vehicle and the environment is critical, and 
the limitations, borders and other specifications of the 
environment are defined in this step. Ground conditions, 
such as its material and slope, should be explicitly 
described. The third group is data regarding the design 
specifications to be parameterized. For instance, 
technical properties of parameterized parts, such as 
weight or material should be defined in a way that their 
effect on the feasibility of the model is readily 
comparable.  

 

 
 

Fig. 1. Design flowchart of a parameterized real-time simulation  
model of an industrial vehicle 
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operating environment is needed. In this procedure, the 
vehicle parts are assumed as either rigid or flexible 
bodies. To decrease the simulation time, the graphic of 
the vehicle should be simplified, for example, by 
neglecting detailed parts that do not
results. The vehicle parts are 
graphic software and the environment is constructed with 
graphics software. Standard parts of the vehicle can be 
used via prepared 3D models that exist in CAD libraries. 

the

feasibility 
engine
specific operating range
parameterized specification/part can be considered as 
having maximum and minimum loading cases
functionality as a function of 
considerations. For instance, the tire of a parameterized 
vehicle has maximum and minimum values for size or 
mass, 
the extreme cases are identified from the parameterized 
cases and the most d
studied. For example, the combination of the minimum 
hydraulic force and the maximum arm weight of a lifting 
vehicle would be studied to assess 
force to lift the components. In this step, the feasibili
estimated with an analytical method, which is called 
initial feasibility analysis. If the parameterized parts and 
their extreme combinations 
parameterization
round is needed to refine the requirem

using
technique or, alternatively, the assembly technique. The 
coding technique requires effort in the initial p
but as the number of parameterizations increases the 
relative amount of work required decreases. With the 
assembly technique, each combination preparation 
demands the same amount of work and, thus the 
assembly technique is considered feasible o
with a
process, five different combinations are considered to be 
the limit where the coding technique should be preferred 
over the assembly technique. The number of different 
parameters and combina

regarding parameterized specifications are coded in a 
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regarding parameterized specifications are coded in a 

The Authors. Published by Praise Worthy Prize S.r.l.

Step 2: Modelling

To parameterize the vehicle, 
operating environment is needed. In this procedure, the 
vehicle parts are assumed as either rigid or flexible 
bodies. To decrease the simulation time, the graphic of 
the vehicle should be simplified, for example, by 
neglecting detailed parts that do not
results. The vehicle parts are 
graphic software and the environment is constructed with 
graphics software. Standard parts of the vehicle can be 
used via prepared 3D models that exist in CAD libraries. 

vehicle parts may be available from 
manufacturer or component manufacturers.

Step 3: Initial 

parameterized model
be taken into account. For example,

size and hydraulic circuit
and capacit

parameterized specification/part can be considered as 
having maximum and minimum loading cases
functionality as a function of 
considerations. For instance, the tire of a parameterized 
vehicle has maximum and minimum values for size or 

fit the mountings.  In this step, 
the extreme cases are identified from the parameterized 

emanding case feasibilities are 
studied. For example, the combination of the minimum 
hydraulic force and the maximum arm weight of a lifting 
vehicle would be studied to assess 
force to lift the components. In this step, the feasibili
estimated with an analytical method, which is called 
initial feasibility analysis. If the parameterized parts and 
their extreme combinations 

can proceed
round is needed to refine the requirem

Step 4: Parameterization

In the design process, parameterization
two fundamentally different techniques: the coding 

technique or, alternatively, the assembly technique. The 
coding technique requires effort in the initial p
but as the number of parameterizations increases the 
relative amount of work required decreases. With the 
assembly technique, each combination preparation 
demands the same amount of work and, thus the 
assembly technique is considered feasible o

small number of combinations
process, five different combinations are considered to be 
the limit where the coding technique should be preferred 
over the assembly technique. The number of different 

tions are defined in this step.

a: Coding 

In the coding technique, all data and specifications 
regarding parameterized specifications are coded in a 

The Authors. Published by Praise Worthy Prize S.r.l.

Step 2: Modelling

To parameterize the vehicle, 
operating environment is needed. In this procedure, the 
vehicle parts are assumed as either rigid or flexible 
bodies. To decrease the simulation time, the graphic of 
the vehicle should be simplified, for example, by 
neglecting detailed parts that do not
results. The vehicle parts are modeled
graphic software and the environment is constructed with 
graphics software. Standard parts of the vehicle can be 
used via prepared 3D models that exist in CAD libraries. 

parts may be available from 
manufacturer or component manufacturers.

Step 3: Initial Feasibility Analysis

parameterized model
be taken into account. For example,

size and hydraulic circuit
and capacit

parameterized specification/part can be considered as 
having maximum and minimum loading cases
functionality as a function of weight, size,
considerations. For instance, the tire of a parameterized 
vehicle has maximum and minimum values for size or 

fit the mountings.  In this step, 
the extreme cases are identified from the parameterized 

emanding case feasibilities are 
studied. For example, the combination of the minimum 
hydraulic force and the maximum arm weight of a lifting 
vehicle would be studied to assess 
force to lift the components. In this step, the feasibili
estimated with an analytical method, which is called 
initial feasibility analysis. If the parameterized parts and 
their extreme combinations 

can proceed. Otherwise, an iteration 
round is needed to refine the requirem

Step 4: Parameterization

In the design process, parameterization
two fundamentally different techniques: the coding 

technique or, alternatively, the assembly technique. The 
coding technique requires effort in the initial p
but as the number of parameterizations increases the 
relative amount of work required decreases. With the 
assembly technique, each combination preparation 
demands the same amount of work and, thus the 
assembly technique is considered feasible o

small number of combinations
process, five different combinations are considered to be 
the limit where the coding technique should be preferred 
over the assembly technique. The number of different 

tions are defined in this step.

a: Coding 

In the coding technique, all data and specifications 
regarding parameterized specifications are coded in a 

The Authors. Published by Praise Worthy Prize S.r.l.

Step 2: Modelling

To parameterize the vehicle, its
operating environment is needed. In this procedure, the 
vehicle parts are assumed as either rigid or flexible 
bodies. To decrease the simulation time, the graphic of 
the vehicle should be simplified, for example, by 
neglecting detailed parts that do not

modeled
graphic software and the environment is constructed with 
graphics software. Standard parts of the vehicle can be 
used via prepared 3D models that exist in CAD libraries. 

parts may be available from 
manufacturer or component manufacturers.

Feasibility Analysis

parameterized model
be taken into account. For example,

size and hydraulic circuitry of a vehicle
and capacit

parameterized specification/part can be considered as 
having maximum and minimum loading cases

weight, size,
considerations. For instance, the tire of a parameterized 
vehicle has maximum and minimum values for size or 

fit the mountings.  In this step, 
the extreme cases are identified from the parameterized 

emanding case feasibilities are 
studied. For example, the combination of the minimum 
hydraulic force and the maximum arm weight of a lifting 
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Step 2: Modelling

its 3D geometry 
operating environment is needed. In this procedure, the 
vehicle parts are assumed as either rigid or flexible 
bodies. To decrease the simulation time, the graphic of 
the vehicle should be simplified, for example, by 
neglecting detailed parts that do not 

modeled using CAD or 3D 
graphic software and the environment is constructed with 
graphics software. Standard parts of the vehicle can be 
used via prepared 3D models that exist in CAD libraries. 
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manufacturer or component manufacturers.
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parameterized model
be taken into account. For example,

ry of a vehicle
and capacities. In addition,

parameterized specification/part can be considered as 
having maximum and minimum loading cases

weight, size,
considerations. For instance, the tire of a parameterized 
vehicle has maximum and minimum values for size or 

fit the mountings.  In this step, 
the extreme cases are identified from the parameterized 

emanding case feasibilities are 
studied. For example, the combination of the minimum 
hydraulic force and the maximum arm weight of a lifting 
vehicle would be studied to assess if 
force to lift the components. In this step, the feasibili
estimated with an analytical method, which is called 
initial feasibility analysis. If the parameterized parts and 
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spreadsheet. The spreadsheet is the user interface. 
Additionally, a script is written in a
language as a bridge between the user interface and the 
real
programming language Python was selected for coding 
the script and it has already been used for connector 
coding in previous studies. For 
al.
their analysis and interface. The procedure for using this 
technique is to choose 
spreadsheet in the first stage. Then, the script reads the 
data from the spreadsheet and implements them into the 
real
software, each designed model has four main files: an 
executable file and thre
(XML) files. The XML files comprise all necessary data 
about the model and its environment. One of the created 
XML files, entitled ‘the main XML file’ consists of 
information about the mechanical and graphical 
properties of the
reads values that are selected by the user and substitutes 
them in the main XML file in place of existing values.

readable file t
each adjustable part, is generated for each option of the 
adjustable parameters. For example, if a model with three 
adjustable parameters is considered, each of which has 
three alternative options, nine assembly 
for the model as shown in Fig. 2
assembly folders equal in number to 
parameters must be 
the assembly files. The number of assembly folders in 
the main XML file depends on
parameters. In this example, three assembly folders are 
required for three adjustable parameters
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bucket filled with material to its previous position. The 

quired time to complete the task was the first 
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that it is run in the real
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extreme combination.
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a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 
evaluated in a simulation 
same initial position and initial velocity for all three 

bucket moves in 
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

On the other hand, the considerable difference i
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transferring much more amount of material 
than other two buckets. 
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checked to confirm that the excavator model can move 
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a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 
evaluated in a simulation 
same initial position and initial velocity for all three 

bucket moves in 
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 
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Step 6 completes the feasibility analysis phases. The 
feasibility of the selected combination of parameters, 
which was estimated analytically in Step 3, is checked in 

time simulation software
the excavator model can move 

freely, dig the ground, and transfer the material while in 
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The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 
evaluated in a simulation test. The excavator had the 
same initial position and initial velocity for all three 

bucket moves in 
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 
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Step 6 completes the feasibility analysis phases. The 
combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software

the excavator model can move 
freely, dig the ground, and transfer the material while in 
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The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

bucket moves in 
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
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transferring much more amount of material 

7. Total spent time to complete the task for the three buckets 
studied; 17.36 s, 19.35 s, and 27.24 s for the small,
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Step 6 completes the feasibility analysis phases. The 
combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software

the excavator model can move 
freely, dig the ground, and transfer the material while in 

eparing, 
Excavator Case

The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

bucket moves in three phases
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
), the big bucket compensated the 

transferring much more amount of material 
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time simulation software
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freely, dig the ground, and transfer the material while in 
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Excavator Case

The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

three phases
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
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Step 6 completes the feasibility analysis phases. The 
combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software

the excavator model can move 
freely, dig the ground, and transfer the material while in 

Executing
Excavator Case

The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the tota
fuel and total spent time of the model are selected before 
running the model. Then, the model is 
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

three phases
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
), the big bucket compensated the 

transferring much more amount of material 

7. Total spent time to complete the task for the three buckets 
studied; 17.36 s, 19.35 s, and 27.24 s for the small,
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Step 6 completes the feasibility analysis phases. The 
combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software

the excavator model can move 
freely, dig the ground, and transfer the material while in 

xecuting
Excavator Case

The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
buckets and cylinder pistons of the main-boom, the 
excavator model can effortlessly be assembl
different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real
simulation test. To provide results, the total consumed 
fuel and total spent time of the model are selected before 
running the model. Then, the model is run,
results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

three phases:
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
), the big bucket compensated the 

transferring much more amount of material 

7. Total spent time to complete the task for the three buckets 
studied; 17.36 s, 19.35 s, and 27.24 s for the small, medium, 
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Analysis 

Step 6 completes the feasibility analysis phases. The 
combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software

the excavator model can move 
freely, dig the ground, and transfer the material while in 

xecuting  
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The parameterized excavator model is ready for use in 
a way that the combination of parameters can be chosen 
easily. Using the available options for the types of 
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different ways. All possible combinations of the 
excavator model are tested for feasibility. Fuel 
consumption and total operation time were selected in 
this study to demonstrate two outputs of a real

l consumed 
fuel and total spent time of the model are selected before 
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results/data can be analyzed. The results for the three 
different buckets and the small cylinder piston were 

test. The excavator had the 
same initial position and initial velocity for all three 

: bringing 
down the bucket, digging the ground, and lifting the 
bucket filled with material to its previous position. The 

quired time to complete the task was the first 
specification. As Fig. 7 shows, the large bucket required 
more time to complete the task than the small and 
medium buckets, 56.9% and 40% longer, respectively. 

, the considerable difference i
), the big bucket compensated the 

transferring much more amount of material 
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combination of parameters, 

which was estimated analytically in Step 3, is checked in 
time simulation software 
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freely, dig the ground, and transfer the material while in 
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small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
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(27.2 s) due to a longer digging step (after the first local 
maximum spot
for digging the ground and carrying the material. 

capacity are significantly lower than the other two 
buckets, which is an opportunity to save both time and 
fuel when
other hand, controlling the large bucket and digging the 
ground with the large bucket poses greater challenges for 
position control than the smaller types, due to the higher 
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shows, at the beginning of the movement, the large 
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buckets. During bu
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motor size are the same. 
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complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 
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Fig. 8 depicts the fuel consumption in the test with the 
small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
fuel consumption.
in Table 
(27.2 s) due to a longer digging step (after the first local 
maximum spot
for digging the ground and carrying the material. 

However, its cycle time and fuel consumption per 
capacity are significantly lower than the other two 
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fuel when
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shows, at the beginning of the movement, the large 
bucket shows more wobbling in the vertical direction. 
Moreover, the maximum values for the vertical positions 
when using the large bucket is less than with the other 
buckets. During bu
of the hoses and cylinder material, and the hydraulic 
motor size are the same. 

Due to the flexibility of the hydraulic system, the large 
bucket with material exhibits more wobbling than the 
small and medium buckets. In
rotational inertia while using the large bucket is higher 
than for the small and medium buckets. Excavator 
operators play a vital role in controlling the bucket. 

Proficient operators accomplish a given material 
handling task in
excavator largely depends on the demands of the working 
environment. 

For instance, if the amount of particles to be 
transferred is important, employing the large bucket can 
be practical. Place, type of materials a
distance are other notable factors for choice of the most 
appropriate bucket. Once the excavator model is 
complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 
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Fig. 8 depicts the fuel consumption in the test with the 
small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
fuel consumption.
in Table V
(27.2 s) due to a longer digging step (after the first local 
maximum spot
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capacity are significantly lower than the other two 
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fuel when
other hand, controlling the large bucket and digging the 
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weight and the amount of material tr
shows, at the beginning of the movement, the large 
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be practical. Place, type of materials a
distance are other notable factors for choice of the most 
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complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 
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Fig. 8 depicts the fuel consumption in the test with the 
small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
fuel consumption.

V. The large bucket has a longer total cycle time 
(27.2 s) due to a longer digging step (after the first local 
maximum spot
for digging the ground and carrying the material. 

However, its cycle time and fuel consumption per 
capacity are significantly lower than the other two 
buckets, which is an opportunity to save both time and 
fuel when handling a fixed amount of materials. On the 
other hand, controlling the large bucket and digging the 
ground with the large bucket poses greater challenges for 
position control than the smaller types, due to the higher 
weight and the amount of material tr
shows, at the beginning of the movement, the large 
bucket shows more wobbling in the vertical direction. 
Moreover, the maximum values for the vertical positions 
when using the large bucket is less than with the other 
buckets. During bu
of the hoses and cylinder material, and the hydraulic 
motor size are the same. 

Due to the flexibility of the hydraulic system, the large 
bucket with material exhibits more wobbling than the 
small and medium buckets. In
rotational inertia while using the large bucket is higher 
than for the small and medium buckets. Excavator 
operators play a vital role in controlling the bucket. 

Proficient operators accomplish a given material 
handling task in
excavator largely depends on the demands of the working 
environment. 

For instance, if the amount of particles to be 
transferred is important, employing the large bucket can 
be practical. Place, type of materials a
distance are other notable factors for choice of the most 
appropriate bucket. Once the excavator model is 
complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 
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ml, 55.2 ml, and 77.7 ml for the small, medium, 
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Fig. 8 depicts the fuel consumption in the test with the 
small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
fuel consumption.

. The large bucket has a longer total cycle time 
(27.2 s) due to a longer digging step (after the first local 
maximum spot) and higher fuel consumption (77.7 ml) 
for digging the ground and carrying the material. 

However, its cycle time and fuel consumption per 
capacity are significantly lower than the other two 
buckets, which is an opportunity to save both time and 

handling a fixed amount of materials. On the 
other hand, controlling the large bucket and digging the 
ground with the large bucket poses greater challenges for 
position control than the smaller types, due to the higher 
weight and the amount of material tr
shows, at the beginning of the movement, the large 
bucket shows more wobbling in the vertical direction. 
Moreover, the maximum values for the vertical positions 
when using the large bucket is less than with the other 
buckets. During bu
of the hoses and cylinder material, and the hydraulic 
motor size are the same. 

Due to the flexibility of the hydraulic system, the large 
bucket with material exhibits more wobbling than the 
small and medium buckets. In
rotational inertia while using the large bucket is higher 
than for the small and medium buckets. Excavator 
operators play a vital role in controlling the bucket. 

Proficient operators accomplish a given material 
handling task in
excavator largely depends on the demands of the working 
environment.  

For instance, if the amount of particles to be 
transferred is important, employing the large bucket can 
be practical. Place, type of materials a
distance are other notable factors for choice of the most 
appropriate bucket. Once the excavator model is 
complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 

8. Fuel consumption for tests with three types of the bucket; 48.6 
ml, 55.2 ml, and 77.7 ml for the small, medium, 
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Fig. 8 depicts the fuel consumption in the test with the 
small cylinder piston and three different buckets. At the 
beginning of the test, the results for the three buckets are 
similar to each other
configuration with the small bucket has the lowest total 
fuel consumption. The discussed specifications are given 

. The large bucket has a longer total cycle time 
(27.2 s) due to a longer digging step (after the first local 

) and higher fuel consumption (77.7 ml) 
for digging the ground and carrying the material. 

However, its cycle time and fuel consumption per 
capacity are significantly lower than the other two 
buckets, which is an opportunity to save both time and 

handling a fixed amount of materials. On the 
other hand, controlling the large bucket and digging the 
ground with the large bucket poses greater challenges for 
position control than the smaller types, due to the higher 
weight and the amount of material tr
shows, at the beginning of the movement, the large 
bucket shows more wobbling in the vertical direction. 
Moreover, the maximum values for the vertical positions 
when using the large bucket is less than with the other 
buckets. During bu
of the hoses and cylinder material, and the hydraulic 
motor size are the same. 

Due to the flexibility of the hydraulic system, the large 
bucket with material exhibits more wobbling than the 
small and medium buckets. In
rotational inertia while using the large bucket is higher 
than for the small and medium buckets. Excavator 
operators play a vital role in controlling the bucket. 

Proficient operators accomplish a given material 
handling task in less time [32]. Bucket selection for the 
excavator largely depends on the demands of the working 

For instance, if the amount of particles to be 
transferred is important, employing the large bucket can 
be practical. Place, type of materials a
distance are other notable factors for choice of the most 
appropriate bucket. Once the excavator model is 
complete, it is exported to a dynamic simulator to 
analyze its motions. A dynamic simulator gives users, 
especially proficient ones, t
feel for the different excavator combinations modeled. 

8. Fuel consumption for tests with three types of the bucket; 48.6 
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The digital tools and simulation are facilitators to 
respond to lifecycle related requirements, such as 
sustainability, traceability, repeatability, and the 
reusability of information in a manufacturing 
environment. The effective use of product and lifecycle 
information by simulation enables faster response to 
changes in customer needs and product-service related 
requirements. 

V. Conclusion 
This paper introduced a method to represent a real-

time model with adjustable parameters into a real-time 
simulation software. An eight-step design flowchart was 
presented illustrating the parameterization procedure. 
Two techniques, the coding technique, and the assembly 
technique can be used for the construction of the real-
time simulation model with adjustable parameters. With 
the coding technique, users use a spreadsheet to choose 
the parameters to be evaluated. A programming language 
script reads data from the spreadsheet and implements 
them in the real-time simulation software. With the 
assembly technique, the parameterization is carried out 
with specific files called assembly files, which are 
substituted into the main XML file. The XML file 
contains all the data to run the simulation. The proposed 
design approach was applied to a case study of an 
excavator. Following the eight steps of the design 
process, parameterized real-time simulation models were 
developed. The models were used to study the effect of 
bucket size on the overall performance of the excavator.  

The proposed conceptual design process is applicable 
to other industrial applications in addition to excavators.  

The construction of a real-time simulation model 
consists of several steps and requires information to be 
gathered from many departments, i.e., mechanical and 
electrical departments, to a single space. A design 
process flowchart is proposed to accomplish this in a 
straightforward manner. The development of a model 
makes it possible to include various components that can 
be easily changed. 
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