Open Access Open Access  Restricted Access Subscription or Fee Access

Methodology for Evaluating the Energy Cost of an Industrial User with and without a Connected Photovoltaic (PV) System, Considering Power Factor Penalties


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v12i4.12692

Abstract


This paper proposes a methodology to evaluate the energy cost of an industrial user before and after a Photovoltaic generator (PVG) is started, in order to observe the penalty cost of the power factor (PF) due to the imbalance of the required energy components for an overall load when starting a PVG. This methodology proposes to probabilistically estimate parameters which are not 100% predictable, such as temperature and radiation, which, combined with the installation characteristics of a PVG, allow estimating the amount of energy that a generator can provide and the consumption components of an active and reactive energy load in order to establish the energy costs per month. An analysis of the energy consumption behavior will follow once the generator is involved into the process, considering the active energy contribution from itself, while evaluating the PF. Once again, the monthly energy costs are set and the possible cost overruns for PF penalties are considered. As a case study, this methodology was implemented in an industrial user located in Bogotá city, having in mind the local regulations to find out that when a photovoltaic generator is started, approximately 15% of the energy consumption costs for 1 year corresponds to PF penalties.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Active Energy; Density of probability; Penalties; Photovoltaic Generator; Power Factor; Reactive Energy

Full Text:

PDF


References


M. Brower, D. Green, R. Hinrichs-rahlwes, S. Sawyer, M. Sander, R. Taylor, I. Giner-reichl, S. Teske, H. Lehmann, M. Alers, and D. Hales, “Renewables 2014 Global Status Report,” 2014.
http://dx.doi.org/10.1007/978-3-319-05780-4_2

C. E. para A. L. y el C. (CEPAL), “Istmo Centroamericano: Las Fuentes Renovables de Energía y el Cumplimiento de la Estrategia 2020,” México, 2009.
http://dx.doi.org/10.4000/books.cemca.668

M. Coviello, J. Gollán, and M. Pérez, “Las alianzas público-privadas en energías renovables en América Latina y el Caribe,” Nac. Unidas, 2012.
http://dx.doi.org/10.1787/9789264233195-es

I. E. Agency, I. Renewable, and E. Agency, “Perspectives for the Energy Investment Needs for a Low-Carbon Energy System About the IEA.”
http://dx.doi.org/10.1787/5km4q8rj3hxs-en

H. Altomonte, “Energías Renovables No Convencionales en la Matríz de Generación Eléctrica. Tres Estudios de Caso.”
http://dx.doi.org/10.3726/978-3-653-05424-8/41

P. Eickemeier, S. Schlömer, E. Farahani, S. Kadner, S. Brunner, I. Baum, and B. Kriemann, Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014.
http://dx.doi.org/10.1017/cbo9781107415416.008

M. M. Zhang, D. Q. Zhou, P. Zhou, and G. Q. Liu, “Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis,” Energy Policy, vol. 97, pp. 181–192, 2016.
http://dx.doi.org/10.1016/j.enpol.2016.07.028

M. M. Zhang, P. Zhou, and D. Q. Zhou, “A real options model for renewable energy investment with application to solar photovoltaic power generation in China,” Energy Econ., vol. 59, pp. 213–226, 2016.
http://dx.doi.org/10.1016/j.eneco.2016.07.028

P. G. V. Sampaio and M. O. A. Gonzçalvez, “Photovoltaic solar energy: Conceptual framework,” Renew. Sustain. Energy Rev., vol. 74, no. June 2016, pp. 590–601, 2017.
http://dx.doi.org/10.1016/j.rser.2017.02.081

R. G. Wandhare and V. Agarwal, “Reactive power capacity enhancement of a PV-grid system to increase PV penetration level in smart grid scenario,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1845–1854, 2014.
http://dx.doi.org/10.1109/tsg.2014.2298532

B. Tamimi, C. Canizares, and K. Bhattacharya, “System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada,” IEEE Trans. Sustain. Energy, vol. 4, no. 3, pp. 680–688, 2013.
http://dx.doi.org/10.1109/tste.2012.2235151

G. G. Hernandez J, Vallejo W, “Practical method for estimating the power and energy delivered by photovoltaic modules operating under non-standard conditions,” Prog. Photovoltaics Res. Appl., vol. 21, no. 5, p. 2013, 2013.
http://dx.doi.org/10.1002/pip.2168

J. Hernandez, G. Gordillo, and W. Vallejo, “Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature,” Appl. Energy, vol. 104, pp. 527–537, 2013.
http://dx.doi.org/10.1016/j.apenergy.2012.10.022

T. Adefarati and R. C. Bansal, “Integration of renewable distributed generators into the distribution system: a review,” IET Renew. Power Gener., vol. 10, no. 7, pp. 873–884, 2016.
http://dx.doi.org/10.1049/iet-rpg.2015.0378

A. W. Sawab, “Evaluating the Value of Distributed Photovoltaic Generations in Radial Distribution Systems,” IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 595–600, 1996.
http://dx.doi.org/10.1109/60.537030

C. J. Lizarazo, Y. P. Hernandez, and J. A. Hernandez, “Methodology for power factor evaluation of an industrial-type user when photovoltaic system is used,” Conf. Rec. IEEE Photovolt. Spec. Conf., vol. 2016–Novem, pp. 1801–1806, 2016.
http://dx.doi.org/10.1109/pvsc.2016.7749933

C. S. Hemsuree Marut, “Modeling of Power Factor Charge for Photovoltaic Generation System Based on Its Contribution to Power Systems,” IEEE, 2015.
http://dx.doi.org/10.1109/ecticon.2015.7207050

L. Zhang, K. Sun, Z. Huang, and Y. W. Li, “A grid-tied photovoltaic generation system based on series-connected module integrated inverters with adjustable power factor,” 2015 IEEE Energy Convers. Congr. Expo. ECCE 2015, pp. 6864–6870, 2015.
http://dx.doi.org/10.1109/ecce.2015.7310621

G. L. Campen, “An Analysis of the Harmonics and Power Factor Effects at a Utility Intertied Photovoltaic System,” IEEE Power Eng. Rev., vol. PER-2, no. 12, p. 46, 1982.
http://dx.doi.org/10.1109/mper.1982.5519987

Y. K. Lo, H. J. Chiu, T. P. Lee, I. Purnama, and J. M. Wang, “Analysis and design of a photovoltaic system DC connected to the utility with a power factor corrector,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4354–4362, 2009.
http://dx.doi.org/10.1109/tie.2009.2030216

ABB., “Cuaderno de Aplicaciones técnicas nº 8 Corrección del factor de potencia y filtrado de armónicos en las instalaciones eléctricas.”, Barcelona.

C. Atn, Integración de las energías renovables no convencionales en Colombia Integración de las energías en Colombia. .

Codensa, “Contrato de Servicio Público de Energía Eléctrica,” Bogotá, Colombia, 2013.

C. de regulación de E. y G. (CREG), “Gestión del Flujo De Potencia Reactiva,” Bogotá, Colombia, 2010.

B. L. J. Wiley, Solar Electricity, no. July. 2000.

Meteotest, “Meteonorm.” [Online]. Available: http://www.meteonorm.com/.

T. W. A. D. A. Darling, “A Test of Goodness of Fit,” J. Am. Stat. Assoc. JSTOR J., vol. 49, no. 268, pp. 765–769, 1954.
http://dx.doi.org/10.1080/01621459.1954.10501232

T. W. A. D. A. D. The, “Asymptotic Theory of Certain ‘Goodness of Fit’ Criteria Based on Stochastic Processes,” JSTOR J., vol. 23, no. 2, pp. 193–212, 1952.
http://dx.doi.org/10.1214/aoms/1177729437

R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo Methods,” 1998.
http://dx.doi.org/10.1007/978-3-642-59657-5_5

Departamento de Impuestos y Aduanas Nacionales - DIAN, “Resolución número 000139 21 de 2012,” Resoluc. 000139, vol. 139, pp. 1–34, 2012.
http://dx.doi.org/10.1136/jisakos-2017-000139

Codensa, “Tarifas de energía eléctrica reguladas por la comisión de regulación de energía y gas. Enero de 2014,” Español (Colombia), 2014.
http://dx.doi.org/10.4000/books.uec.138

Meo, S., Sorrentino, V., Zohoori, A., Vahedi, A., Second-order sliding mode control of a smart inverter for renewable energy system, (2014) International Review of Electrical Engineering (IREE), 9 (6), pp. 1090-1096.
http://dx.doi.org/10.15866/iree.v9i6.5368

Santolo, M., Sorrentino, V., Discrete-time integral variable structure control of grid-connected PV inverter, (2015) Journal of Electrical Systems, 11 (1), pp. 102-116.

Santolo, M., Vincenzo, S., Discrete–time integral sliding mode control with disturbances compensation and reduced chattering for PV grid–connected inverter, (2015) Journal of Electrical Engineering, 66 (2), pp. 61-69.

Bahri, H., Aboulfatah, M., Guisser, M., Abdelmounim, E., Robust Control Strategy for Maximum Power Point Tracking and Unity Power Factor of a Three Phase Grid Connected Photovoltaic System, (2016) International Review of Automatic Control (IREACO), 9 (2), pp. 95-102.
http://dx.doi.org/10.15866/ireaco.v9i2.8260


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize