Overview on Maximum Power Point Tracking (MPPT) Techniques for Photovoltaic Power Systems

Md Kamal Hossain(1*), Mohd. Hasan Ali(2)

(1) University of Engineering and Technology (RUET), Bangladesh
(2) University of Engineering and Technology (RUET), Bangladesh
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Photovoltaic (PV) is one of the mature technologies as a clean energy source. PV power generation is greatly affected by varying weather conditions (irradiance, temperature, etc.), and Maximum Power Point Tracker (MPPT) has a decisive role to harvest the maximum possible energy from the PV system disregarding the fact of varying environmental conditions. Therefore, MPPT attains prior position considering the global efficiency of the PV system. This article provides an overview and potential applications of the MPPT technology in PV power systems. A comprehensive literature review is done on different MPPT structures, control strategies and operations, selection of components and other technical considerations. This work encompasses of 30 MPPT techniques which includes both conventional as well as recently published methods. It also discusses the MPPTs which are effective on partial shaded condition (PSC), low power applications and also for distributed PV system. An elaborate comparison among the MPPT techniques is made which is helpful for proper selection. The PV professionals and novice researchers will be benefitted in a great extent, since it is a source of valuable information on MPPT. At the end, a list of 185 research publications is appended for quick reference.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Insolation; Irradiance; Maximum Power Point (MPP); Maximum Power Point Tracker (MPPT); Partial Shading; Photovoltaic (PV)

Full Text:

PDF


References


M. Fadaee and M.A.M. Radzi, Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review, Renewable and Sustainable Energy Reviews, vol. 16, n. 5, June 2012, pp.3364– 3369.

H. Kim, S. Kim, C.-K. Kwon, Y.-J. Min, C. Kim, and S.-W. Kim, An Energy-Efficient Fast Maximum Power Point Tracking Circuit in an 800 μW Photovoltaic Energy Harvester, IEEE Trans. Ind. Electron., vol. 28, n. 6, Jun. 2013, pp. 2927–2925.

K. Ishaque and Z. Salam, A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition, Renewable and Sustainable Energy Reviews, vol.19, Mar. 2013, pp. 475–488.

V. Salas, E. Olias, A. Barrado, and A. Lazaro, Review of the maximum power point tracking algorithm for stand-alone photovoltaic system, Solar Energy Mater. Solar Cells, vol. 90, n. 11, Jul. 2006, pp. 1555–1578.

T. Esram and P. L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Conv., vol. 22, n. 2, Jun. 2007, pp. 439–449,

B. Subudhi, and R. Pradhan, “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” IEEE Trans. on Sust. Energy, vol. 4, n.1, Jan. 2013, pp.89-98.

M. A. Elgendy, B. Zahawi, and D. J. Atkinson, Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications, IEEE Trans. Sustain. Energy, vol. 3, n. 1, Jan. 2012, pp. 21–33.

R. Alonso, P. Ibáñez, V. Mart´ınez, E. Román, and A. Sanz, An innovative perturb, observe and check algorithm for partially shaded PV systems, 13th Eur. Conf. Power Electronics and Applications (EPE’09), Barcelona, Spain, 2009.

H. Patel and V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions, IEEE Trans. Ind. Electron., vol. 55, n. 4, Apr. 2008, pp. 1689–1698.

D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, Optimized maximum power point tracker for fast-changing environmental conditions, IEEE Trans. Ind. Electron., vol. 55, no. 7, Jul. 2008, pp. 2629–2637.

W. T. Chee, T. C. Green, and A. H.-A. Carlos, Analysis of perturb and observe maximum power point tracking algorithm for photovoltaic applications, presented at the 2008 IEEE 2nd Int. Power and Energy Conf. (PECon 2008), Johor Bahru, Malaysia, 2008.

C. W. Tan, T. C. Green, and C. A. Hernandez-Aramburo, A current mode controlled maximum power point tracking converter for building integrated photovoltaics, presented at the 2007 Eur. Conf. Power Electronics and Applications (EPE), Aalborg, Denmark, 2007.

L. L. Buciarelli, B. L. Grossman, E. F. Lyon, and N. E. Rasmussen, The energy balance associated with the use of a MPPT in a 100 kW peak power system, in IEEE Photovoltaic Spec. Conf., 1980, pp. 523–527.

J. D. van Wyk and J. H. R. Enslin, A study of wind power converter with microprocessor based power control utilizing an oversynchronous electronic scherbius cascade, in Proc. IEEE Int. Power Electron. Conf., 1983, pp. 766–777.

C.-C. Hua and J.-R. Lin, Fully digital control of distributed photovoltaic power systems, in Proc. IEEE Int. Symp. Ind. Electron., 2001, pp. 1–6.

Chao, K.-H., Huang, C.-H., Chang, Y.-C., Application of a photovoltaic generation system in a small-scale air conditioner, (2012) International Review of Electrical Engineering (IREE), 7 (5), pp. 5927-5938.

N. S. D’Souza, L. A. C. Lopes, and X. Liu, An intelligent maximum power point tracker using peak current control, in Proc. 36th Annu. IEEE Power Electron. Spec. Conf., 2005, pp. 172–177.

A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids, IEEE Trans. Power Electron., vol. 26, n. 4, Apr. 2011, pp. 1010–1021.

O. Wasynezuk, Dynamic behavior of a class of photovoltaic power systems, IEEE Trans. Power Apparatus Syst., vol. PAS-102, n. 9, Sep. 1983, pp. 3031– 3037.

Daoud, A., Midoun, A., Simulation and experimental study of maximum power point tracker based on a DC/DC buck converter, (2010) International Review of Electrical Engineering (IREE), 5 (2), pp. 514-520.

C. Hua and J. R. Lin, DSP-based controller application in battery storage of photovoltaic system, in Proc. IEEE IECON 22nd Int. Conf. Ind. Electron., Control, Instrum., Aug. 5–10, 1996, vol. 3, pp. 1705–1710.

Y. Kim, H. Jo, and D. Kim, A new peak power tracker for cost-effective photovoltaic power system, in Proc. 31st Intersoc. Energy Conv. Eng. Conf., vol. 3, Aug. 1996, pp. 1673–1678.

Y. Jung, G. Yu, J. Choi, and J. Choi, High-frequency DC link inverter for grid-connected photovoltaic system, Conf. Rec. 29th IEEE Photovoltaic Spec. Conf., pp. 1410–1413, May 2002.

K. Chomsuwan, P. Prisuwanna, and V. Monyakul, Photovoltaic grid connected inverter using two-switch buck-boost converter, Conf. Rec. 29th IEEE Photovoltaic Spec. Conf., pp. 1527–1530, May 2002.

T. Shimizu, O. Hashimoto, and G. Kimura, A novel high-performance utility-interactive photovoltaic inverter system, IEEE Trans. Power Electron., vol. 18, n. 2, Mar. 2003, pp. 704–711.

N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis, IEEE Trans. Ind. Electron., vol. 55, n. 7, Jul. 2008, pp. 2610–2621.

M. Fortunato, A. Giustiniani, G. Petrone, G. Spagnuolo, and M. Vitelli, Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter, IEEE Trans. Ind. Electron., vol. 55, n. 7, Jul. 2008, pp. 2684– 2693.

E. Figueres, G. Garcera, J. Sandia, F. Gonzalez-Espin, and J. C. Rubio, Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter, IEEE Trans. Ind. Electron., vol. 56, no. 3, Mar. 2009, pp. 706–717.

H. Patel and V. Agarwal, Investigations into the performance of photovoltaics-based active filter configurations and their control schemes under uniform and non-uniform radiation conditions, IET Renewable Power Gener., vol. 4, n. 1, Jan. 2010, pp. 12–22.

S.-H. Park, G.-R. Cha,Y.-C. Jung, and C.-Y.Won, Design and application for PV generation system using a soft-switching boost converter with SARC, IEEE Trans. Ind. Electron., vol. 57, n. 2, Feb. 2010, pp. 515–522.

M. A. Slonim and L. M. Rahovich, Maximum power point regulator for 4 kW solar cell array connected through invertor to the AC grid, in Proc. 31st Intersoc. Energy Conv. Eng. Conf., Aug. 11–16, 1996, vol. 3, pp. 1669–1672.

N. Kasa, T. Lida, and H. Iwamoto, Maximum power point tracking with capacitor identifier for photovoltaic power system, in IEE Proc. Elect. Power Appl., Nov. 2000, vol. 147, n. 6, pp. 497–502.

E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, Development of a microcontroller-based, photovoltaic maximum power point tracking control system, IEEE Trans. Power Electron., vol. 16, n. 1, Jan. 2001, pp. 46–54.

M. Veerachary, T. Senjyu, and K.Uezato, Maximum power point tracking control of IDB converter supplied PV system, in IEE Proc. Electric Power Appl., Nov. 2001, vol. 148, no. 6, pp. 494–502.

Y.-T. Hsiao and C.-H. Chen, Maximum power tracking for photovoltaic power system, in Conf. Rec. 37th IAS Annu. Meeting Ind. Appl. Conf., 2002, vol. 2, pp. 1035–1040.

N. Kasa, T. Iida, and L. Chen, Flyback inverter controlled by sensorless current MPPT for photovoltaic power system, IEEE Trans. Ind. Electron., vol. 52, n. 4, Aug. 2005, pp. 1145–1152.

S. Jain and V. Agarwal, A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking, IEEE Trans. Power Electron., vol. 22, n. 5, Sep. 2007, pp. 1928–1940.

R. Gules, J. De Pellegrin Pacheco, H. L. Hey, and J. Imhoff, “A maximum power point tracking system with parallel connection for PV stand-alone applications,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2674–2683, Jul. 2008.

J.-M. Kwon, B.-H. Kwon, and K.-H. Nam, Three-phase photovoltaic system with three-level boosting MPPT control, IEEE Trans. Power Electron., vol. 23, n. 5, Sep. 2008pp. 2319–2327.

J.-M. Kwon, B.-H. Kwon, and K.-H. Nam, Grid-connected photovoltaic multi string PCS with PV current variation reduction control, IEEE Trans. Ind. Electron., vol. 56, n. 11, Nov. 2009, pp. 4381–4388.

C. Liu, K. T. Chau, and X. Zhang, An efficient wind–photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine, IEEE Trans. Ind. Electron., vol. 57, n. 3, Mar. 2010, pp. 831–839.

A. Al-Amoudi and L. Zhang, Optimal control of a grid-connected PV system for maximum power point tracking and unity power factor, in Proc. 7th Int. Conf. Power Electron. Variable Speed Drives (Conf. Publ. No. 456), Sep. 21–23, 1998, pp. 80–85.

L. Zhang, A. Al-Amoudi, and Y. Bai, Real-time maximum power point tracking for grid-connected photovoltaic systems, in Proc. 8th Int. Conf. Power Electron. Variable Speed Drives (IEE Conf. Publ. No. 475), 2000, pp. 124–129.

H. Patel and V.Agarwal, MPPT Scheme for a PV-fed single-phase single stage grid-connected inverter operating in CCM with only one current sensor, IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 256–263, Mar. 2009.

M.-L. Chiang, C.-C. Hua, and J.-R. Lin, “Direct power control for distributed PV power system,” in Proc. Power Convers. Conf., pp. 311–315, Osaka, Japan, 2002.

W. Xiao and W. G. Dunford, A modified adaptive hill climbing MPPT method for photovoltaic power systems, in Proc. IEEE 35th Annu. Power Electron. Spec. Conf., Jun. 20–25, 2004, vol. 3, pp. 1957– 1963.

P. J. Wolfs and L. Tang, A single cell maximum power point tracking converter without a current sensor for high performance vehicle solar arrays, in Proc. IEEE 36th Power Electron. Spec. Conf., Jun. 16–16, 2005, pp. 165–171.

A. Pandey, N. Dasgupta, and A. K. Mukerjee, High-performance algorithms for drift avoidance and fast tracking in solar MPPT system, IEEE Trans. Energy Convers., vol. 23, n. 2, Jun. 2008, pp. 681–689.

S. Jain and V.Agarwal, A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems, IEEE Power Electron. Lett., vol. 2, n. 1, Mar. 2004, pp. 16–19.

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Optimization of perturb and observe maximum power point tracking method, IEEE Trans. Power Electron., vol. 20, n. 4, Jul. 2005, pp. 963–973.

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems, IEEE Trans. Ind. Electron., vol. 56, n. 11, Nov. 2009, pp. 4473– 4482.

G. Petrone, G. Spagnuolo, and M. Vitelli, A Multivariable Perturb-and-Observe Maximum Power Point Tracking Technique Applied to a Single-Stage Photovoltaic Inverter, IEEE Trans. Ind. Electron., vol. 58, n. 1, Jan. 2011, pp. 76–84.

D. Shmilovitz, On the control of photovoltaic maximum power point tracker via output parameters, IEE Proc. Elect. Power Appl., vol. 152, n. 2, Mar. 2005, pp. 239–248.

D. Shmilovitz, Photovoltaic maximum power point tracking employing load parameters, in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2005, vol. 3, pp. 1037–1042.

A. S. Kislovski and R. Redl, Maximum power tracking using positive feedback, in Proc. 25th Annu. IEEE Power Electron. Spec. Conf., Jun. 1994, pp. 1065–1068.

Y. Jiang, J. A. A. Qahouq, and T. A. Haskew, Adaptive Step Size With Adaptive-Perturbation Frequency Digital MPPT Controller for a Single-Sensor Photovoltaic Solar System, IEEE Trans. Power Electron., vol. 28, n. 7, Jul. 2013, pp. 3195–3205.

Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, A novel improved variable step-size incremental-resistance MPPT method for PV systems, IEEE Trans. Ind. Electron., vol. 58, no. 6, Jun. 2011, pp. 2427–2434.

L. Piegari and R. Rizzo, Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking, IET Renewable Power Generation, vol. 4, n. 4, Jul. 2010, pp. 317–328.

D. C. Jones and R. W. Erickson, Probabilistic Analysis of a Generalized Perturb and Observe Algorithm Featuring Robust Operation in the Presence of Power Curve Traps, IEEE Trans. Power. Electron., vol. 28, n. 6, Jun. 2013, pp. 2912–2926.

A. M. Latham, R. Pilawa-Podgurski, K. M. Odame, and C. R. Sullivan, Analysis and Optimization of Maximum Power Point Tracking Algorithms in the Presence of Noise, IEEE Trans. Power. Electron., vol. 28, n. 7, Jul. 2013, pp. 3479–3494.

J. M. Enrique, J. M. Andujar, and M. A. Bohorquez, A reliable, fast, and low cost maximum power point tracker for photovoltaic applications, Solar Energy, vol. 84, n. 1, Jan. 2010, pp. 79–89.

K. H. Hussein and I. Mota, Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions, in IEE Proc. Generation Transmiss. Distrib., 1995, pp. 59–64.

Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, Novel maximum-power-point tracking controller for photovoltaic energy conversion system, IEEE Trans. Ind. Electron., vol. 48, n. 3, Jun. 2001, pp. 594–601.

T.-Y. Kim, H.-G. Ahn, S. K. Park, and Y.-K. Lee, A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation, in Proc. IEEE Int. Symp. Ind. Electron., 2001, pp. 1011–1014.

A. Safari and S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter, IEEE Trans. Ind. Electron., vol. 58, n. 4, Apr. 2011, pp. 1154–1161.

Kavitha, R., Thottungal, R., Cascaded multilevel inverter for stand alone PV system with maximum power point tracking technique, (2012) International Review of Electrical Engineering (IREE), 7 (6), pp. 5939-5943.

X. Zhou, D. Song, Y. Ma, and D. Cheng, The simulation and design for MPPT of PV system based on incremental conductance method, in Proc. Int. Conf. Inf. Eng., Aug. 2010, vol. 2, pp. 314–317.

G.-C. Hsieh, H.-I Hsieh, C.-Y. Tsai, and C.-H. Wang Photovoltaic Power-Increment-Aided Incremental-Conductance MPPT with Two-Phased Tracking, IEEE Trans. Power. Electron., vol. 28, n. 6, Jun. 2013, pp. 2895–2910.

G. C. Hsieh, H. L. Chen, Y. Chen, C. M. Tsai, and S. S. Shyu, Variable frequency controlled incremental conductance derived MPPT photovoltaic stand-alone DC bus system, in Proc. IEEE Appl. Power Electron. Conf., 2008, pp. 1849–1854.

L S. Duan, F. Liu, B. Liu, and Y. Kang, A variable step size INC MPPT method for PV systems, IEEE Trans. Ind. Electron., vol. 55, n. 7, Jul. 2008, pp. 2622–2628.

M. A. Elgendy, B. Zahawi, and D. J. Atkinson Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm, IEEE Trans. Sustain. Energy, vol. 4, n. 1, Jan 2013, pp. 108-117.

J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, Integrated photovoltaic maximum power point tracking converter, IEEE Trans. Ind. Electron., vol. 44, n. 6, Dec. 1997, pp. 769–773.

C. Hua, J. Lin, and C. Shen, Implementation of a DSP-controlled photovoltaic system with peak power tracking, IEEE Trans. Ind. Electron., vol. 45, n. 1, Feb. 1998, pp. 99–107.

E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, Intelligent PV module for grid-connected PV systems, IEEE Trans. Ind. Electron., vol. 53, n. 4, Jun. 2006, pp. 1066–1073.

B Liu, S. Duan, F. Liu and P. Xu, Analysis and improvement of maximum power point tracking based on incremental conductance method for photovoltaic array, in proc. 7th Inter. Conf. on Power Electronics and Drive Systems, pp. 637-641, 2007.

W. Ping, D. Hui, D. Changyu, and Q. Shengbiao, An improved MPPT algorithm based on traditional incremental conductance method, in proc. 4th Inter. Conf. on Power Electronics. Sys. and App., pp.1-4, 2011.

D. P. Quoc, Q. N. Nhat, P. L. Minh, K. L. Dinh, V. N. T. Dan, and A. N. Bao, The New Combined Maximum Power Point Tracking Algorithm Using Fractional Estimation in Photovoltaic Systems, IEEE PEDS 2011, Singapore, Dec 2011.

S. B. Kjær, Evaluation of the “Hill Climbing” and the “Incremental Conductance” Maximum Power Point Trackers for Photovoltaic Power Systems, IEEE Trans. Ener. Conv., vol. 27, no. 4, pp. 922–929, Dec. 2012.

K. Kobayashi, I. Takano, and Y. Sawada, A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions, in proc. IEEE Power Eng. Soc. Gen. Meet., 2003, pp. 2612–2617.

W. Xiao, M. G. J. Lind, W. G. Dunford, and A. Capel, Real-time identification of optimal operating points in photovoltaic power systems, IEEE Trans. Ind. Electron., vol. 53, n. 4, Aug. 2006, pp. 1017–1026.

M. A. S. Masoum and H. Dehbonei, Optimal power point tracking of photovoltaic system under all operating conditions, in proc. 17th Congress of the World Energy Council, Sept. 12–18, 1998.

M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking, IEEE Trans. Energy Convers., vol. 17, n. 4, Dec. 2002 pp. 514–522.

A. Tariq and J. Asghar, Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel, in proc. IEEE PEDS, pp. 251-255, 2005.

O. Lopez-Lapena and M.T. Penella, Low-Power FOCV MPPT Controller with Automatic Adjustment of the Sample & Hold, IET Electronics Letter, vol.48, no. 20, pp. 1301-1303, 2012.

J. Ahmad, A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays, in proc. IEEE 2nd ICSTE, pp. 247-250, 2010.

D. P Quoc, Q. N. Nhat, L. M. Phuong, L. D. Khoa, N. T. D. Vu, A N. Bao, and H. H. Lee, The new combined Maximum Power Point Tracking algorithm using fractional estimation in photovoltaic systems,in proc. IEEE PEDS, pp. 919 – 923, Dec. 2011.

M.A.S Masoum, S.M.M Badejani, and E. F Fuchs, Microprocessor-controlled new class of optimal battery chargers for photovoltaic Applications, IEEE Trans Energy Convers vol. 19, pp.599–606, 2004.

T. Tafticht, K. Agbossou, M.L. Doumbia, A. Cheriti, An improved maximum power point tracking method for photovoltaic systems, Renewable Energy, vol. 33, pp. 1508–1516, 2008.

C.-Y. Tang, S.-Y. Ou, and Y.-C Su, Design and Implementation of a Hybrid Maximum Power Point Tracker in Solar Power System, in Proc. IEEE PEDS 2011, pp. 999–1004.

A. F Murtaza, H.A. Sher, M. Chiaberge, D. Boero, M.D Giuseppe, and K.E Addoweesh, A novel hybrid MPPT technique for solar PV applications using perturb & observe and Fractional Open Circuit Voltage techniques, in proc. IEEE 15th Inter. Symp. Mechatronica, 2012.

T. Noguchi, S. Togashi, and R. Nakamoto, Short-Current Pulse-Based Maximum-Power-Point Tracking Method for Multiple Photovoltaic-and-Converter Module System, IEEE Trans. Indus. Electron., vol. 49, n. 1, Feb. 2002, pp. 217–223.

H. Matsuo and F. Kurokawa, New solar cell power supply system using a boost type bidirectional DC-DC converter, IEEE Trans. Ind. Electron., vol. 31, Feb. 1984, pp. 51–55.

S. M. Alghuwainem, Matching of a dc motor to a photovoltaic generator using a step-up converter with a current-locked loop, IEEE Trans. Energy Conversion, vol. 9, Mar. 1994, pp. 192–198.

N. Toshihiko, T. Shigenori, and N. Ryo, Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system, in Proc. 2000 IEEE ISIE, vol. 1 , pp. 157–162.

S. Togashi, T. Noguchi, and R. Nakamoto, Short-Current pulse based maximum-power-point operation of photovoltaic generation system, in Proc. 1999 IEEJ-IAS Conf., vol. 3, pp. 221–224.

H. E.-S. A. Ibrahim, and F. F. Houssiny, Microcomputer Controlled Buck Regulator for Maximum Power Point Tracker for DC Pumping System Operates from Photovoltaic System, in Proc. of the IEEE International Fuzzy Systems Conference, vol. 1, pp. 406-411, Aug. 1999.

M. A. G. D Brito, L. Galotto, Jr., L. P. Sampaio, G. D. A. E. Melo, and C. A. Canesin, Evaluation of the Main MPPT Techniques for Photovoltaic Applications, IEEE Trans Indus. Elect., vol. 60, n. 3, Mar. 2013, pp. 1156–1167.

V. V. R. Scarpa, S. Buzo, and G. Spiazzi, Low complexity MPPT technique exploiting the effect of the PV Module MPP Locus characterization, IEEE Trans. Ind. Electron., vol. 56, n. 5, May 2009, pp. 1531–1538.

Y. Chen and K. M. Smedley, A cost-effective single-stage inverter with maximum power point tracking, IEEE Trans. Power Electron., vol. 19, n. 5, Sep. 2004, pp. 1289–1294.

E. S. Sreeraj, K. Chatterjee, and S. Bandyopadhyay, One-Cycle-Controlled Single-Stage Single-Phase Voltage-Sensorless Grid-Connected PV System, IEEE Trans. Ind. Electron., vol. 58, n. 1, Mar. 2013, pp. 1216–1223.

N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, Optimized one-cycle control in photovoltaic grid connected applications for photovoltaic power generation, IEEE Trans. Aerosp. Electron. Syst., vol. 42, n. 3, Jul. 2006, pp. 954–972.

T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control, IEEE Trans. Power Electron., vol. 21, n. 5, Sep. 2006, pp. 1282–1291.

D. P. Holm and M. E. Ropp, Comparative study of maximum power point tracking algorithms, Progr. Photovolt.: Res. Applicat., vol. 11, n. 1, pp. 47–62, 2003.

A. Brambilla, New approach to photovoltaic arrays maximum power point tracking, in proc. of the 30th IEEE Power Electron. Conf., pp. 632–637, 1998.

Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems, IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2427–2434, Jun. 2011.

M. Bodur and M. Ermis, Maximum power point tracking for low power photovoltaic solar panels, in Proc. 7th Mediterranean Electrotechnical Conf., 1994, pp. 758–761.

T. Noguchi and H. Matsumoto, Maximum power point tracking method of photovoltaic using only single current sensor, in Proc. 10th Eur. Conf Power Electron. Applicat., Toulouse, France, Sep. 2–4, 2003.

K. K. Tse, M. T. Ho, H. S.-H. Chung, and S. Y. (Ron) Hui, A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation, IEEE Trans. on Power Electron., vol.17, n.6, Nov. 2002,pp. 980-989.

Chenni, R., Zarour, L., Amarouayache, M., Bouzid, A., A new design for analogue maximum power point tracking, (2008) International Review of Electrical Engineering (IREE), 3 (1), pp. 93-99.

R. F. Coelho, F. M. Concer, and D. C. Martins, A MPPT approach based on temperature measurements applied in PV systems, in Proc. IEEE ICSET, 2010, pp. 1–6.

L. Zhang, W. G. Hurley, and W. H. Wolfle, A New Approach to Achieve Maximum Power Point Tracking for PV System With a Variable Inductor, IEEE Trans. Power Electron., vol. 26, n. 4, Apr. 2011, pp. 1031–1037.

P. K. Peter and V. Agarwal, On the Input Resistance of a Reconfigurable Switched Capacitor DC–DC Converter-Based Maximum Power Point Tracker of a Photovoltaic Source, IEEE Trans. Power Electron., vol. 27, n. 12, Dec. 2012, pp. 4880–4893.

S. Jiang, D. Cao, Y. Li, and F. Z. Peng, Grid-Connected Boost-Half-Bridge Photovoltaic Microinverter System Using Repetitive Current Control and Maximum Power Point Tracking, IEEE Trans. on Power Electron., vol. 27, n. 11, Nov. 2012, pp. 4711-4722.

F.-S. Pai, R.-M. Chao, S. H. Ko, and T.-S. Lee, Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array, IEEE Trans. Sustain. Energy, vol. 2, n. 1, Jan 2011, pp. 60-68.

W. Xiao, W. G. Dunford, P. R. Palmer, and A. Capel, Application of centered differentiation and steepest descent to maximum power point tracking, IEEE Trans. Ind. Electron., vol. 54, no. 5, Oct. 2007, pp. 2539–2549.

C. Rodriguez and G. A. J. Amaratunga, Analytic solution to the photovoltaic maximum power point problem, IEEE Trans. Circuits Syst. 1, vol. 54, n. 9, Sep. 2007, pp. 2054–2060.

M. Matsui, T. Kitano, D.-h. Xu, and Z.-q. Yang, A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link, in Conf. Record 1999 IEEE Ind. Appl. Conf., 1999, pp. 804–809.

T. Kitano, M. Matsui, and D.-h. Xu, Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response, in Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc., 2001, pp. 1309–1314.

L. Yin, X. Wu, C.-L. Chen, L.-C Cheng, Dynamically self-adaptive load current maximization technique for maximum power point tracking in photovoltaic arrays, in Proc. IEEE Inter. Conf. of EDSSC, pp. 1-2, 2011.

Khiari, B., Sellami, A., Andoulsi, R., Mami, A., A non linear MPPT control of photovoltaic pumping system based on discrete sliding mode, (2012) International Review of Electrical Engineering (IREE), 7 (6), pp. 6129-6136.

C.-C. Chu and C.-L. Chen, Robust maximum power point tracking method for photovoltaic cells: A sliding mode control approach, Solar Energy, vol. 83, no. 8, 2009, pp. 1370–1378.

I. S. Kim, M. B. Kim, and M. J. Youn, New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system, IEEE Trans. Ind. Electron., vol. 53, n. 4, Jun. 2006, pp. 1027–1035.

E. Bianconi, J. Calvente, R. Giral, E. Mamarelis, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, A Fast Current-Based MPPT Technique Employing Sliding Mode Control, IEEE Trans. Ind. Electron., vol. 60, n. 3, Mar. 2013, pp. 1168–1178.

M. Vitorino, L. Hartmann, A. Lima, and M. Correa, Using the model of the solar cell for determining the maximum power point of photovoltaic systems, in Proc. Eur. Conf. Power Electron. Appl., Sep. 2007, pp. 1–10.

L. V. Hartmann, M. A. Vitorino, M. B. R. Correa, and A. M. N. Lima, Combining Model-Based and Heuristic Techniques for Fast Tracking the Maximum-Power Point of Photovoltaic Systems, IEEE Trans. Power. Electron., vol. 28, n. 6, Jun. 2013, pp. 2875–2885.

C. Hua and C. Shen, Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system, in Proc. Power Electron. Specialist Conf., Japan, May 17–22, 1998.

R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero, MPPT of Photovoltaic Systems using Extremum–Seeking Control, IEEE Trans. Aerospace and Electron. Systems, vol. 42, n. 1, Jan. 2006, pp. 249–258.

L. Li-qun and W. Zhi-xin, A rapid MPPT algorithm based on the research of solar cell’s diode factor and reverse saturation current, WSEAS Trans. Syst., vol. 7, n. 5, pp. 568–579, 2008.

C.-Y. Won, D.-H. Kim, S.-C. Kim, W.-S. Kim, and H.-S. Kim, A new maximum power point tracker of photovoltaic arrays using fuzzy controller, in 25th Annu. IEEE PESC Jun. 20–25, 1994, vol. 1, pp. 396–403.

M. G. Simoes and N. N. Franceschetti, Fuzzy optimization based control of a solar array, Proc. IEE Electr. Power Appl., vol. 146, n. 5, pp. 552– 558, Sep. 1999.

T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, New Maximum Power Point Tracker for PV Arrays Using Fuzzy Controller in Close Cooperation With Fuzzy Cognitive Networks, IEEE Trans. Ener. Conv., vol. 21, n. 3, Sep. 2006, pp. 793–803.

C.-S. Chiu, T-S fuzzy maximum power point tracking control of solar power generation systems, IEEE Trans. Energy Conv., vol. 25, n. 4, Dec. 2010, pp. 1123–1132.

B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System, IEEE Trans. Power Electron., vol. 26, n. 4, Apr. 2011, pp. 1010–1021.

B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids, IEEE Trans. Ind. Electron., vol. 60, no. 4, Apr. 2013, pp. 1596–1606.

I.H. Altasa, A.M. Sharaf, A novel maximum power fuzzy logic controller for photovoltaic solar energy systems Renewable Energy, vol. 33, pp. 388-399, 2008.

N. Patcharaprakiti and S. Premrudeepreechacharn, Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system, in Proc. IEEE Power Eng. Soc. Winter Meeting, 2002, pp. 372–377.

A.A. Nabulsi and R. Dhaouadi, Efficiency Optimization of a DSP-Based Standalone PV System Using Fuzzy Logic and Dual-MPPT Control, IEEE Trans. Indus. Inform., vol.8, n. 3, pp. 573-584, Aug. 2012.

J. L. Agorreta, L. Reinaldos, R. González, M. Borrega, J. Balda, and L. Marroyo, Fuzzy Switching Technique Applied to PWM Boost Converter Operating in Mixed Conduction Mode for PV Systems, IEEE Trans. Indus. Electr., vol.56, n. 11, pp. 4363- 4373, Nov. 2009.

Y.- R. Yang, A Fuzzy Logic Controller for Maximum Power Point Tracking with 8-bit Microcontroller, in Proc. IEEE IECON 2010 , pp. 2895-2900.

M. Salhi and R. El-Bachtri, Maximum Power Point Tracker using Fuzzy Control for Photovoltaic System, Inter. Jour. of Research and Reviews in Electrical and Computer Engineering (IJRRECE), vol. 1, n. 2, pp. 69-75, Jun. 2011.

M. Adly, A.H. Besheer, An optimized fuzzy maximum power point tracker for standalone photovoltaic systems: Ant colony approach, in Proc. IEEE ICIEA 2012, pp.113-119.

M. Veerachary, T. Senjyu, and K. Uezato, Neural-Network-Based Maximum-Power-Point Tracking of Coupled-Inductor Interleaved-Boost-Converter-Supplied PV System Using Fuzzy Controller, IEEE Trans. Ind. Electron., vol. 500, n. 4, Aug. 2003, pp. 749–758.

M. Veerachary and N. Yadaiah, ANN based maximum power tracking for PV supplied dc motors, Solar Energy, vol. 69, n. 4, pp. 343–350, 2000.

T. Hiyama, S. Kouzuma, and T. Imakubo, Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control, IEEE Trans. Energy Convers., vol. 10, n. 2, Jun. 1995, pp. 360–367.

T. Hiyama and K. Kitabayashi, Neural network based estimation of maximum power generation from PV module using environment information, IEEE Trans. Energy Conv., vol. 12, n. 3, Sep. 1997, pp. 241–247.

K. Ro and S. Rahman, Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant, IEEE Trans. Energy Convers., vol. 13, n. 3, Sep. 1998, pp. 276–281.

A. B. G. Bahgat, N. H. Helwa, G. E. Ahmad, and E. T. E. Shenawy, MPPT controller for PV systems using neural networks, Renew. Energy, vol. 30, n. 8, pp. 1257–1268, 2005.

W. M. Lin, C. M. Hong, and C. H. Chen, Neural-network-based MPPT control of a stand-alone hybrid power generation system, IEEE Trans. Power Electron., vol. 26, n. 12, Dec. 2011, pp. 3571–3581.

K. Samangkool and S. Premrudeepreechacharn, Maximum power point tracking using neural networks for grid-connected photovoltaic system, in Proc. Int. Conf. Future Power Syst., Nov. 2005, p. 4.

F.- M. Tsai, C.-S. Tseng, G. Hong, and S. Lin, A novel MPPT control design for PV modules using neural network compensator, in Proc. Int. Symp. Ind. Electron., May 2012, pp. 1742–1747.

A. A. Kulaksız and R. Akkaya, “A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive,” Solar Energy, vol. 86, pp. 2012–2375, 2012.

K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation, IEEE Trans. Power Electron., vol. 27, n. 8, Aug. 2012,pp. 3627–3638.

V. Phimmasone, Y. Kondo, T. Kamejima, and M. Miyatake, “Evaluation of extracted energy from PV with PSO-based MPPT against various types of solar irradiation changes,” presented at the Int. Conf. Electrical Machine and Systems, Incheon, Korea, 2010.

V. Phimmasone, T. Endo, Y. Kondo, and M. Miyatake, Improvement of the maximum power point tracker for photovoltaic generators with particle swarm optimization technique by adding repulsive force among agents, in Proc. Int. Conf. Electr. Mach. Syst., 2009, pp. 1–6.

M. A. Hassan and M. A. Abido, Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization, IEEE Trans. Power Electron., vol. 26, no. 3, pp. 755–769, Mar. 2011.

L.-R. Chen, C.-H. Tsai, Y.-L Lin, and Y.-S. Lai, A Biological Swarm Chasing Algorithm for Tracking the PV Maximum Power Point, IEEE Trans. Energy Conver., vol. 25, no. 2, pp. 484–494, Jun. 2010.

H. Taheri, Z. Salam, K. Ishaque, and Syafaruddin, A novel Maximum Power Point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using Differential Evolution, in Proc. IEEE Symposium on Industrial Electronics and Applications, pp. 82–87, 2010.

Y. Gi, D. Jung, J. Kim, T. Lee, and C. Won, A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions, IEEE Trans. Ind. Electron., vol. 26, n. 4, Apr. 2011, pp. 1001–1009.

L. Fangrui, K. Yong, Z. Yu, and D. Shanxu, Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter, in Proc. 3rd ICIEA, 2008, pp. 804–807.

H. Patel and V. Agarwal, Matlab-based modeling to study the effects of partial shading on PV array characteristics, IEEE Trans. Energy Convers., vol. 23, n. 1, Mar. 2008, pp. 302–310.

S. Kazmi, H. Goto, O. Ichinokura, and H.-J. Guo, An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading, in Proc. AUPEC, 2009, pp. 1–6.

Y. Liu, Advance control of photovoltaic converters, Ph.D. dissertation, Dept. Eng., Univ. Leicester, Leicester, U.K., Apr., 2009.

M. Miyatake, T. Inada, I. Hiratsuka, H. Zhao, H. Otsuka, and M. Nakano, Control characteristics of a Fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded, in Proc. 4th IPEMC, 2004, vol. 2, pp. 816–821.

T. L. Nguyen and K.-S. Low, A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems, IEEE Trans. Ind. Electron., vol. 57, n. 10, Oct. 2010, pp. 3456–3467.

M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: A PSO approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, n. 1, Jan. 2011, pp. 367–380.

L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions, IEEE Trans. Ind. Electron., vol. 56, n. 5, May 2009, pp. 1548–1556.

A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, Cascaded DC–DC Converter Photovoltaic Systems: Power Optimization Issues, IEEE Trans. Ind. Electron., vol. 58, n. 2, Feb 2011, pp. 403–411.

G. Carannante, C. Fraddanno, M. Pagano, and L. Piegari, Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation, IEEE Trans. Ind. Electron., vol. 56, n. 11, Nov. 2009, pp. 4374–4380.

E. Koutroulis, and F. Blaabjerg, A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions, IEEE Trans. Photovoltaics, vol. 2, n. 2, Apr. 2012, pp. 184–190.

G. Petrone, G. Spagnuolo, and M. Vitelli, Distributed Maximum Power Point Tracking: Challenges and Commercial Solutions, [online]. Available.

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, A new analog MPPT technique: TEODI,” Progr. Photovolt.: Res. Appl., vol. 18, n. 1, Jan. 2010, pp. 28– 41.

G. Petrone, G. Spagnuolo, and M. Vitelli, TEODI: PV MPPT based on the equalization of the Output operating points in correspondence of the forced displacement of the input operating points,” in Proc. ISIE, Bari, Italy, Jul. 4–7, 2010, pp. 3463–3468.

G. Petrone, G. Spagnuolo, and M. Vitelli, An Analog Technique for Distributed MPPT PV Applications, IEEE Trans. Ind. Electron., vol. 59, n. 12, , Dec. 2012, pp. 4713–4722.

A. Barchowsky, J. P Parvin, G.F. Reed, M.J. Korytowski, B.M. Grainger, A Comparative Study of MPPT Methods for Distributed Phovoltaic Generation,” in Proc. ISGT, Jan. 16–20, 2012, pp. 1–7.

R. Alonso, E. Roman, A. Sanz and V. E. M. Santos, Analysis of Inverter-Voltage Influence on Distributed MPPT Architecture Performance,” IEEE Trans. Ind. Electron., vol. 59, n. 10, Oct. 2012, pp. 3900–3907.

Y.-C. Chang, C.-L. Kuo, K.-H. Sun, and T.-C. Li, “Development and Operational Control of Two-String Maximum Power Point Trackers in DC Distribution Systems,” IEEE Trans. Power Electron., vol. 28, n. 4, Apr. 2013, pp. 1852–1861.

Y. Park, S.-K. Sul, C.-H. Lim,W.-C. Kim, and S.-H. Lee, “Asymmetric Control of DC-Link Voltages for Separate MPPTs in Three-Level Inverters,” IEEE Trans. Power Electron., vol. 28, n. 6, June. 2013, pp. 2760–2769.

S. Poshtkouhi, V. Palaniappan, M. Fard, and O. Trescases, “A General Approach for Quantifying the Benefit of Distributed Power Electronics for Fine Grained MPPT in Photovoltaic Applications Using 3-D Modeling,” IEEE Trans. Power Electron., vol. 27, n. 11, Nov. 2012, pp. 4656–4666.

O. López-Lapeña, M. T. Penella and M. Gasulla, “A Closed-Loop Maximum Power Point Tracker for Subwatt Photovoltaic Panels,” IEEE Trans. Ind. Electron., vol. 59, n. 3, Mar. 2012, pp. 1588–1596.

O. Lopez-Lapena, M. T. Penella, and M. Gasulla, “A new MPPT method for low-power solar energy harvesting,” IEEE Trans. Ind. Electron., vol. 57, n. 9, Sep. 2010, pp. 3129–3138.

A. Chini and L. Rovatti, “Micro-power photovoltaic harvester base on a frequency-to-voltage MPPT tracker,” Electron. Lett., vol. 46, n. 8, Apr. 2010, pp. 587–589.

C. Alippi and C. Galperti, An adaptive system for optimal solar energy harvesting in wireless sensor network nodes, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, n. 6, Jul. 2008, pp. 1742–1750.

A. Pandey, N. Dasgupta, and A. K. Mukerjee, A Simple Single-Sensor MPPT Solution, IEEE Trans. power. Electron., vol. 22, n. 2, Mar. 2007, pp. 698–700.

R. Faranda, S. Leva, and V. Maugeri, MPPT techniques for PV Systems: energetic and cost comparison, in proc. IEEE Power and Energy Society General Meeting, 2008.

M. Ropp, J. Cale, M. Mills-Price, M. Scharf, S.G. Hummel, A Test Protocol to Enable Comparative evaluation of Maximum Power Point Trackers under both Static and Dynamic Irradiance, in Proc. 37th IEEE Photovoltaic Conference (PVSC), pp.3734-3737, Jun.2011.


Refbacks

  • There are currently no refbacks.



Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize