Power Efficient Coded Modulation for Wireless Body Area Network Using Multiband-UWB Technology


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Wireless body area network are expected to be a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex shape consisting of different tissues. It is expected that the nature of propagation of electromagnetic signals in the case of WBAN to be very different than the one found in other environment. Here we are going to expand the knowledge of IEEE 802.15.3a UWB channel by taking measurement of parameters in frequency range from 3-6GHz and transmitting to remote monitor with high data rate up to 480Mbps by using MB-OFDM and increasing the throughput with power efficiency.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


APSK (Amplitude Phase Shift Key); BAN (Body Area Networks); Multi Band-Orthogonal Frequency-Division Multiplexing (MB-OFDM); Ultra-Wideband (UWB); Wireless Personal Area Networks (WPAN)

Full Text:

PDF


References


Zaishuang Liu, QiuliangXie, KewuPeng, and Zhixing Yang,, APSK Constellation with Gray Mapping : A genetic algorithm approach, in IEEE communications letters, vol. 15,( no. 12), december 2011 , pp. 1–6.

Marco Baldi, Franco Chiaraluce Antonio de Angelis, RossanoMarchesani, SebastianoSchillaci ,Performance of APSK modulation in wireless tactical scenarios for land mobile systems,IEEE Transactions on Information Theory , vol.28,(no.1), may 2011 pp. 55–67, 1982.

R. De Gaudenzi, A. Guillen i Fabregas, and A. Martinez, Performance analysis of turbo-coded APSK modulations over nonlinear satellite [1] channels, IEEE Transactions on Wireless Communications, vol.5,( no.9),pp. 2396-2407, September 2006

Saberinia, E., Tang, J., Tewfik, A.H., and Parhi, K.K., Pulsed-OFDM Modulation for Ultrawideband Communications, IEEE Transactions on vehicular Technology, Feb 2009, Vol. 58, (No.2), pp. 720-726.

M. Z. Win and R. A. Scholtz, Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun, Apr. 2000 vol. 48, (no. 4), pp. 679–689

M. Z.Win and R. A. Scholtz, “On the robustness of ultra-wide bandwidth signals in dense multipath environments,” IEEE Commun. Lett.,Feb. 1998, vol. 2,( no. 2), pp. 51–53.

A. Batra et al., Multi-band OFDM: Merged proposal #1, Merged Proposal for the IEEE 802.15.3a Standard, Jul. 2003, San Francisco, CA. IEEE 802.15 work group official web site. [Online]. Available: http://grouper.ieee.org/groups/802/15/pub/2003/ Jul03/

Balakrishnan, A. Batra, and A. Dabak, A multi-band OFDM system for UWB communication, in Proc. IEEE Conf. Ultra Wideband Syst. Technol., Nov. 2003, pp. 354–358.

J. Foerster et al., Channel Modeling Sub-Committee Report Final. 802.15 work group official web site. [Online]. Available: http://grouper.ieee.org/groups/802/15/pub/2003/May03/

L.N. Lee, LDPC Codes, Application to Next Generation Communication Systems Oct 2003, Hughes Network Systems. T. S. Rappaport, Wireless Communications. (Prentice Hall, 2001).

L. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come, IEEE Signal Processing Magazine, vol. 21,(no. 6), pp. 26-54, Nov 2004.

Omid Abedi: John Nielsen: UWB Data rate and Channel Capacity in Modulation Schemes IEEE Trans. Commun, Apr. 2000 vol. 48,( no. 4), pp.1809–1826.

Jon Hamkins, Pasadena,Performance of Low-Density Parity-Check Coded, IEEE Trans. Commun, Apr. 2010 vol. 18,( no. 4), pp.1–14.

Design of a multiband OFDM system for realistic UWB channel environments, IEEE Trans. Microwave Theory Techniques, vol. 52(,no. 9), pp. 2123-2138, Sept. 2004.

A. Batraet al., Multiband OFDM physical layer specification, WiMedia Alliance, Release 1.5, August 2009.

J. Foersteret al., Channel modeling sub-committee report final,IEEE P802.15-02/490r1-SG3a, Feb. 2003.

J. G. Proakis, Digital Communications (4th ed. McGraw-Hill, 2000).

Mattera, D., Tanda, M., Data-aided synchronization for OFDM/OQAM systems, (2012) Signal Processing, 92 (9), pp. 2284-2292

Mattera, D., Tanda, M., A new method for blind synchronization for OFDM/OQAM systems, (2011) ISPA 2011 - 7th International Symposium on Image and Signal Processing and Analysis, art. no. 6046578, pp. 46-51

Mattera, D., Tanda, M., Preamble-based synchronization for OFDM/OQAM systems, (2011) European Signal Processing Conference, pp. 1598-1602

Mattera, D., Tanda, M., Blind symbol timing and CFO estimation for OFDM/OQAM systems, (2013) IEEE Transactions on Wireless Communications, 12 (1), art. no. 6397549, pp. 268-277

Mattera, D., Tanda, M., Bellanger, M., Frequency-spreading implementation of OFDM/OQAM systems, (2012) Proceedings of the International Symposium on Wireless Communication Systems, art. no. 6328353, pp. 176-180

Mattera, D., Lipardi, M., Sterle, F., Constellation design for widely linear transceivers, (2010) Eurasip Journal on Advances in Signal Processing, 2010, art. no. 176587, pp. 1-13

Mattera, D., Sterle, F., ML estimation of receiver IQ imbalance parameters, (2007) 2007 International Waveform Diversity and Design Conference, WDD, art. no. 4339401, pp. 160-164

Izzo, L., Mattera, D., Tanda, M., Multipath-aware joint symbol timing and CFO estimation in multiuser OFDM/OQAM systems, (2010) European Signal Processing Conference, pp. 1120-1124


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize