Open Access Open Access  Restricted Access Subscription or Fee Access

Evolutionary Optimization of Power Plant Control System Using Immunity-Inspired Algorithms


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This paper presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques mimicking the biological immune system. The optimization algorithms are implemented in Matlab®, while the power plant is modeled in Dynsim®. The computational interface between these main components is described and implemented. The evolutionary optimization relies on several algorithms inspired by mechanisms of the immune system of superior organism such as cloning, affinity-based selection, seeding, and vaccination. These algorithms are expected to enhance the computational effectiveness, improve convergence, be more efficient in handling multiple local extrema, and achieve adequate balance between exploration and exploitation. The optimization environment can handle two categories of problems: optimization of constant control system parameters and optimization of variable setpoints. The functionality of the proposed optimization methodology is illustrated for the regulatory control of an acid gas removal unit as part of an integrated gasification combined cycle power plant.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Artificial Immune System; Evolutionary Optimization; Power Plant Control

Full Text:

PDF


References


W. L. Luyben, B. Tyreus, and M. Luyben, Plantwide process control. New York, USA: McGraw-Hill; 1998.
http://dx.doi.org/10.1002/aic.690431205

G. P. Rangaiah and V. Kariwala (editors), Plantwide Control – Re cent Developments and Applications, John Wiley and Sons, Ltd., United Kingdom, 2012.
http://dx.doi.org/10.1002/9781119968962

S. Skogestad, Control structure design for complete chemical plants, Computers and Chemical Eng., 28, pp. 219–34, 2004.
http://dx.doi.org/10.1016/j.compchemeng.2003.08.002

R Yelchuru and S. Skogestad, Optimal Controlled Variable Selection for Individual Process Units in Self Optimizing Control with MIQP Formulations, Proc. of American Control Conference, San Francisco, CA, 2011.
http://dx.doi.org/10.1109/acc.2011.5991350

D. Jones, D. Bhattacharyya, R. Turton, and S. E. Zitney, Plant-wide control system design: Primary controlled variable selection, Computers and Chemical Engineering , 71, pp. 220–234, 2014
http://dx.doi.org/10.1016/j.compchemeng.2014.08.004

V. Sakizlis, J. D. Perkins and E. N. Pistikopoulos, Recent advances in optimization-based simultaneous process and control design, Computers & Chemical Eng., 28, pp. 2069-2086, 2004.
http://dx.doi.org/10.1016/j.compchemeng.2004.03.018

Y. Cao, A formulation of nonlinear model predictive control using automatic differentiation, Journal of Process Control Vol. 15, 8Iss. Pp. 851-858, 2005
http://dx.doi.org/10.1016/j.jprocont.2005.04.007

L. T. Biegler, An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing: Process Intensification, 46(11) , pp. 1043 – 1053, 2007.
http://dx.doi.org/10.1016/j.cep.2006.06.021

P.Diwan, Artificial Intelligence and the Chemical World: Expert Systems Applications in Chemical Analysis, Chemical Synthesis, and Chemical Engineering, IETE Journal of Research, 34 (3), pp. 223-230, 2015
http://dx.doi.org/10.1080/03772063.1988.11436733

I. R. S. Victorino, J. P. Maia, JE. R. Morais, M. R. Wolf Maciel, and R. Maciel Filho, Optimization for large scale process based on evolutionary algorithms: genetic algorithms, Chemical Engineering Journal, 132, 1-3, pp. 1–8, 2007.
http://dx.doi.org/10.1016/j.cej.2006.12.032

F. Sun, W. Du, R. Qi, F. Qian, and W. Zhong, A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes, Chinese Journal of Chemical Engineering, 21, (2) pp. 144—154, 2013.
http://dx.doi.org/10.1016/s1004-9541(13)60452-8

J. Rajesh, K. Gupta1, H. S. Kusumakar, V. K. Jayaraman, and B. D. Kulkarni, Dynamic optimization of chemical processes using ant colony framework, Computers & Chemical Engineering, 25, 6, pp. 583-595, 2001.
http://dx.doi.org/10.1016/s0097-8485(01)00081-x

B. Zhang, D. Z. Chen, and W. X. Zhao, Iterative ant-colony algorithm and its application to dynamic optimization of chemical process, Computers & Chemical Engineering, 29, pp. 2078-2086, 2005.
http://dx.doi.org/10.1016/j.compchemeng.2005.05.020

D. H. Kim, A. Abraham, and K Hirota, Hybrid Genetic: Particle Swarm Optimization Algorithm, Studies in Computational Intelligence, 75, pp. 147–170, 2007.
http://dx.doi.org/10.1007/978-3-540-73297-6_7

X. Chen, W. Du, R. Qi, F. Qian, and H. Tianfield, Hybrid Gradient Particle Swarm Optimization for Dynamic Optimization Problems of Chemical Processes, Asia-Pacific Journal of Chemical Engineering, Vol. 8, Iss. 5 pp. 708-720, 2013.
http://dx.doi.org/10.1002/apj.1712

D. Dasgupta (Editor), Artificial Immune Systems and Their Applications, Springer Verlag, New York, USA, 1999.
http://dx.doi.org/10.1007/978-3-642-59901-9

L. N. de Castro and F. J. von Zuben, aiNet: An Artificial Immune Network for Data Analysis, in H. Abbass, R. Sarker, and C. Newton, (Eds.), Data Mining: A Heuristic Approach, Sydney, Australia: Idea Group Publishing, Univ. New South Wales, 2001.
http://dx.doi.org/10.4018/9781930708259.ch012

L. N. de Castro and J. Timmis, An artificial immune network for multimodal function optimization, Proc. of IEEE Congress on. Evolutionary Computation, Vol. 1, pp. 699–674, May 2002.
http://dx.doi.org/10.1109/cec.2002.1007011

D. H. Kim and H. Lee, Intelligent Control of Nonlinear Power Plant Using Immune Algorithm Based Multiobjective Optimization, Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control Taipei, Taiwan, March 21-23, 2004
http://dx.doi.org/10.1109/icnsc.2004.1297150

Y. Zhou, G.-L. Wang, P. Yang, and D.-Q. Kang, Fuzzy Immune Adaptive PID Control for Fermentation Process, Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008.
http://dx.doi.org/10.1109/iita.2008.418

F. Areed, M.A. El-Hosseini, M. S. Saraya, Temperature control for a chemical reactor using a ew Genetic Algorithm, Proc. Int. Conference on Circuits, Systems and Control, Interlaken, Switzerland, 2014.
http://dx.doi.org/10.1109/acc.2013.6580874

K. Wojdan, K. Swirski, and T.Chomiak, Immune Inspired System for Chemical Process Optimization using the example of a Combustion Process in a Power Boiler, Proc. of the 14th International Conference on Intelligent System Applications to Power Systems, Kaohsiung, Taiwan, 2007
http://dx.doi.org/10.1109/isap.2007.4441678

L. Tao, X. kong, W. Zhong, and F. Qian, Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation, Chinese Journal of Chemical Engineering, 20(6), pp. 1047—1052, 2012
http://dx.doi.org/10.1016/s1004-9541(12)60585-0

Luyben, W. L. Plantwide Dynamic Simulators in Chemical Processing and Control; Marcel Dekker: New York, 2002.
http://dx.doi.org/10.1002/9781119968962.ch6

N. V. S. N. Murthy Konda, G.P. Rangaiah, and P. R. Krishnaswamy, Plant-wide control of industrial process: an integrated framework of simulation and heuristics, Ind EngChem Res, :8300–13, 2005.
http://dx.doi.org/10.1021/ie048951z

B. G. Liptak, (Ed.), Instrument Engineer’s Handbook, 4th Edition, Process Control and Optimization, Volume II, Taylor and Francis Group, Boca Raton, FL, 2006.
http://dx.doi.org/10.1201/9781420064001

L. Wiley, Using Dynamic Simulation to Drive Process Design, Control, and Optimization, 2015 AlChE Annual Meeting, Salt Lake City, UT, Nov. 8-13, 2015.
http://dx.doi.org/10.2172/10106200

Simsci-Esscor, Dynamic Simulation Suite User Guide, available at http://www.simsci esscor.com, last accessed Sept. 2015.
http://dx.doi.org/10.1016/b978-0-409-90003-3.50029-4

W. L. Luyben, Distillation Design and Control Using Aspen Simulation, John Wiley and Sons, Inc., Hoboken NJ, 2013
http://dx.doi.org/10.1002/0471785253

Q. Smejkal and M. Soos, Comparison of computer simulation of reactive distillation using ASPEN Plus and HYSYS software, J. of Chemical Eng. and Processing, Vol. 41, pp. 413-418, 2002.
http://dx.doi.org/10.1016/s0255-2701(01)00160-x

O. Almpanis-Lekkas, M. Muhlbock, B. Weiss, and W. Wukovits, Modelling of a Sinter Plant in gPROMS, Advanced Process Modelling Forum, London, United Kingdom, April 2014.
http://dx.doi.org/10.1016/j.jclepro.2015.08.050

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Pub. Comp., Inc., 1989.
http://dx.doi.org/10.5860/choice.27-0936

D. Bhattacharyya, R. Turton and S. E. Zitney, Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture, IndEngChem Res 50(3), pp. 1674-1690. 2010.
http://dx.doi.org/10.1021/ie101502d

F.V. Lima, D. Bhattacharyya, R. Turton, P. Mahapatra, and S. E. Zitney,. Control of integrated gasification combined cycle power plants with CO2 capture, The Impact of Control Technology, 2nd edition, T. Samad and A.M. Annaswamy (eds.), IEEE Control Systems Society, 2014.
http://dx.doi.org/10.2172/1026486


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize