Effect of Rates of Aeration and Agitation on the Volumetric Coefficient of Oxygen Transfer in the Production of Bikaverin

M. C. Chavez-Parga(1*), G. Hinojosa-Ventura(2), R. Maya-Yescas(3), J. C. Gonzalez-Hernandez(4)

(1) Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería Química, Mexico
(2) Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería Química, Mexico
(3) Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería Química, Mexico
(4) Laboratorio de Bioquímica del Departamento de Ing. Bioquímica del Instituto Tecnológico de Morelia, Mexico
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The volumetric mass transfer coefficient and the power number are some of the most important parameters in engineering; they are needed to scale up the equipment and/or processes. Besides, the volumetric mass transfer coefficient (kLa) for the different operational conditions (aeration and agitation rates) were obtained in the culture medium free of microorganisms and for the fermentation, such conditions were found for the most production of bikaverin. The Reynolds number and the power were determined for different treatments in bioreactor. The results in the bioreactor showed that high speed of agitation and low aeration rate favor bikaverin production, the highest production was 112.23 mgL-1 with the condition of 0.1 vvm and 500 rpm was found on the average kLa during the fermentation of 41.42 h-1, whereas, to the culture medium without microorganisms the kLa increases proportionally to the increase of the agitation and aeration rates
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Aeration; Agitation; Bikaverin; Power Number

Full Text:

PDF


References


M. Limon, R. Rodríguez, J. Avalos, Review of Bikaverin production and applications, Appl. Microbiol Biotechnol 87 (2010) 21–29.

M. Chavez-Parga, O. Gonzalez-Otega, C. Sanchez, M. Negrete-Rodriguez, L. Medina, E. Escamilla-Silva, Hydrodynamics, mass transfers and rheological studies of Gibberellic acid in an airlift bioreactor, Microbiol Biotechnol 23 (2007) 615-623.

P. M. Doran, Bioprocess Engineering Principles (Academic Press, 1995).

G. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal Chem 31 (3) (1959) 426–428.

R. Quintero, Ingeniería bioquímica (Alhambra Mexicana, S. A., 1981).

E. Bailey, F. Ollis, Biochemical engineering fundamentals (2nd Ed, McGraw Hill, 1994).

E. Galindo F, Aspectos e ingeniería en fermentaciones: cómo mezclar gases, líquidos y sólidos, aportaciones científicas y humanísticas mexicanas del siglo XX (Academia Mexicana de Ciencia, Fondo de cultura Económica, 2008).

P. Bedoya, S. Hoyos, Efecto de la relación de agitación-aireación sobre el crecimiento celular y la producción de Azadiractina en cultivos celulares de Azadirachta indica A. Juss, Rev Fac Nal Agr-Medellín, 63-1 (2010) 5293-5305.

E. Galindo, C. Peña, C. Serrano, Domesticar microorganismos en un biorreactor: los retos del bioingeniero, Una ventana al quehacer científico (Instituto de Biotecnología de la UNAM, 2008).

R. Erazo, J. Cárdenas, Determinación experimental del coeficiente de transferencia de oxígeno (kLa) en un biorreactor batch, Rev Per Quím Ing Quím 4-2 (2001) 22-27.

O. Garcia, E. Gomez, Bioreactor scale up and oxygen transfer rate in microbial processes: An overview, Biotechnol Adv 27(2009) 153-176.

M. Lee, Biochemical Engineering (Prentice Hall, Englewood Cliffs, 2010).


Refbacks

  • There are currently no refbacks.



Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize