Vegetable Oils for Biodiesel Production as Friendly Energetic Alternative: the Case of Mexico


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Among the current cited biofuels, biodiesel production using vegetable oils as raw materials exhibits technical, social and economic advantages. Some crops exhibit untapped potential as source-alternatives for satisfying the increasing energy demand; therefore, it is important to study the feasible reaction routes to transform triglycerides, mainly, into biodiesel. Mexico has been taken into account as case of study, in order to estimate the potential utility and economic impact of vegetable oils in its development. It is noticed that about 90% of the Mexican territory exhibits favorable climatic characteristics to crops able to produce vegetable oils useful in biodiesel production
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Biodiesel; Energy Alternative; Mexico; Vegetable Oils

Full Text:

PDF


References


R. Piloto, Y. Sanchez, M. Lapuerta, L. Goyos, S. Verhelst, Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression, energ convers manage 65 (2013) 255-261.

A. Demirbass, Biodiesel, a realistic fuel alternative for diesel engines (Springer, 2008).

F. Kiss, M. Jovanovic G. Boskovic, Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts, Fuel Process Technol 91 (2010) 1316-1320.

I. Atadashi, M. Aroua, A. Aziz, Biodiesel separation and purification: a review, Renew energy 36 (2011) 437-443.

V. Brahmkhatri, A. Patel, 12-Tungstophosphoic acid anchored to SBA-15: An efficient , environmentally benign reusable catalyst for biodiesel production by esterification of free fatty acids, A Appl Catal 403 (2011) 161-172.

M. Hosseini, E. Sodagar, Esterification of free fatty acids (biodiesel) using nano sulfated-titania as catalyst in solvent free conditions, C R Chim 16 (2013) 229-238.

J. Marchetti, M. Pedernera, N. Schbib, Production of biodiesel from acid oil using sulfuric acid as catalyst: kinetics study, Int J Low Carb Technol 6 (2011) 38-43.

H. Fukuda, A.J. Kondo, Biodiesel fuel production by transesterification of oils, Biosci Bioeng 92 (2001) 405-416.

N. Nguyen, Y. Demirel, Using thermally coupled reactive distillation columns in biodiesel production, Energy 36 (2011) 4838-4847.

S. Glisic, D.J. Skala, The problems in design and detailed analysis of energy consumption for biodiesel synthesis at supercritical conditions, Supercrit Fluid 43 (2009) 293-301.

C. Kiwjaroun, C. Tubtimdee, P. Piumsomboon, LCA studies comparing biodiesel synthetized by conventional and supercritical methanol methods, JOCP 17 (2009) 143-153.

S. Keera, S. El Sabagh, A. Taman, Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst, Fuel 90 (2011) 42-47.

P. Fregolente, L. Fregolente, M. Wolf, Water content on biodiesel, diesel and biodiesel-diesel blends, J Chem Eng Data 57 (2012) 1817-1821.

K. Tan, K. Lee, A. Mohamed, J. Supercrit Fluids, Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction 53 (2010) 88-91.

C. Drapcho, N. Nhuan, T. Walker, Biofuels Engineering Process Technology (Mc.Graw Hill, 2008).

C. Chen, C. Huang, D. Tran, J. Chang, Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts, Bioresource Technol 113 (2012) 8-13.

M. Agarwal, K. Singh, S. Chaurasia, Kinetic modeling for biodiesel production by heterogeneous catalysis, J. Renew Sust Energ 4 (2012) 013117.

A. Rubio, A. Castillo, M. Alburquerque, R. Mariscal, C. Cavalcante, M. Lopez, A new and efficient procedure for removing calcium soaps in biodiesel obtained using CaO as a heterogeneous catalyst, Fuel 95 (2012) 464-470.

J. Dias, M. Alvim, M. Almeida, J. Mendez, M. Sanchez, J. Rivera, Biodiesel production using calcium manganese oxide as catalyst and different raw materials, Energ Conv Manag 65 (2013) 647-653.

T. Korman, B. Sahachartsiri, D. Charbonneau, L. Huang, M. Beauregard, J. Bowie, Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by direct evolution, Biotechnol biofuels 6 (2013) 1-13.

S. Sharmila, L. Rebecca, M. Dias, Production of biodiesel from Chaetomorpha antennina and Gracilaria corticata, J Chem Pharm Res. 4 (2012) 4870-4874.

S. Sharmila, L. Rebecca, GC-MS Analysis of esters of fatty acid present in biodiesel produced from Chladophora vagabunda, J Chem Pharm Res 4 (2012) 4883-4887.

X. Feiyan, X. Zhang, H. Luo, T. Tan, A new method for preparing raw material for biodiesel production, Process Biochem 41 (2006) 1699-1702.

R. Dias, B. de Castro, A. Machado, M. Zarur, D. Guimaraes, Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production, Enzyme Res (2011) 1-16.

Y. Tsai, H. Lin, M. Lee, Biodiesel production with continuous supercritical process: non catalytic transesterification and esterification with or without carbon dioxide, Bioresource Technol 145 (2013) 362-369.

V. Marulanda, Biodiesel production by supercritical methanol transesterification: process simulation and potential environmental impact assessment, J Clean Prod 33 (2012) 109-116.

http://www.siap.gob.mx/index.php?option=com_wrapper&view =wrapper&Ietemid=350

M. López, M. Zafra, D. Martín, R. Mariscal, F. Cabello, R. Moreno, J. Santamaría, J. Fierro, Biodiesel from sunflower oil by using activated calcium oxide, Appl Catal B 73 (2007) 317-326.

A. Sagiroglu, Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase, Artif Cell, Blood Substit Biotechnol, 36 (2008) 138-149.

R. Umer, A. Farooq, A. Muhammad, Optimization of base catalytic methanolysis of sunflower (Helianthus annuus) seed oil for biodiesel production by using response surface methodology, Ind Eng Chem Res, 48 (2009) 1719-1726.

C. Westbrook, C. Naik, O. Herbinet, W. Pitz, M. Mehl, S. Sarathy, H. Curran, Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels, Combust Flame, 158 (2011) 742-745.

Y. Tang, X. Gu, G. Chen, 99% yield biodiesel production from rapeseed oil using benzyl bromide CaO catalyst, Env Chem Lett 11 (2013) 203-208.

L. Gutierrez, O. Sanchez, C. Cardona, Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry, Bioresource Technol 100 (2009) 1227-1237.

T. Muppaneni, H. Reddy, S. Ponnusamy, P. Patil, Y. Sun, P. Dailey, S. Dheng, Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach, Fuel 107 (2013) 633-640.

P. Canchaochai, P. Boonnoun, N. Laosiripojana, M. Goto, B. Jongsomjit, J. Panpranot, O. Mekasuwandumrog, A. Shotipruk, Transesterification of palm oil at near-critical conditions using sulfonated carbon-based acid catalyst, Chem Eng Comm, 200 (2013) 1542-1552.

S. Chongkhong, C. Tongurai, P. Chetpattananondh, Continuous esterification for biodiesel production from palm fatty acid distillate using economical process, Renew Energ 34 (2009) 1059-1063.

Ali, O.M., Mamat, R., Faizal, C.K.M., Palm biodiesel production, properties and fuel additives, (2012) International Review of Mechanical Engineering (IREME), 6 (7), pp. 1573-1580.

P. Oilvares, J. Quesada, Thermal decomposition of fatty acid chains during the supercritical methanol transesterification of soybean oil to biodiesel, J Supercrit Fluids 72 (2012) 52-58.

N. Asri, S. Machmudah, W. Wahyudiono, S. Suprapto, K. Budikarjono, A. Roesyadi, M. Goto, Non catalytic transesterification of vegetables oil in sub-and supercritical methanol: a kinetic’s study, BCREC 7 (2013) 215-223.

K. Ferdous, M. Rakib, R. Khan, M. Islam, Preparation of biodiesel from soybean oil by using heterogeneous catalyst, Int J Energ Env 4 (2013) 243-252.

A. Go, Y. Lee, Y. Kim, S. Park, J. Choi, J. Lee, S. Han, S. Kim, C. Park, Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system, Enzyme Microb Tech. 53 (2013) 154-158.

Y. Li, F. Qiu, D. Yang, X. Li, P. Sun, Preparation, characterization, and application of heterogeneous solid base catalyst for biodiesel production from soybean oil, Biomass Bioener 35 (2011) 2787-2795.

N. El Boulifi, A. Bouaid, M. Martinez, J. Aracil, Optimization and oxidative stability of biodiesel production from rice bran oil, Renew Energ 53 (2013) 141-147.

P. Shiu, S. Gunawan, W. Hsieh, N. Kasim, Y. Ju, Biodiesel production from rice bran by a two-step in-situ process, Bioresource Technol 101 (2010) 984-989.

S. Sinha, A. Agarwal, S. Garg, Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization, Energ Convers Manag 49 (2008) 1248-1257.

A. Zieba, L. Matachowski, Methanolysis of castor oil catalyzed by solid potassium and cesium salts of 12-tungstophosphoric acid, Catal Lett. 127 (2009) 183-194.

J. Dias, J. Araújo, J. Costa, M. Alvim, M. Almeida, Biodiesel production from raw castor oil, Energy 53, (2013) 58-66.

G. Santana, P. Martins, N. Silva, C. Batistella, R. Filho, M. Maciel, Simulation and cost estimate for biodiesel production using castor oil, Chem Eng Res Des 88 (2010) 626-632.

A. Silitonga, H. Masjuki, T. Mahlia, H. Ong, A. Atabani, W. Chong, A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: study of physical and chemical properties, Renew Sust Energ Rev 24 (2013) 514-533.

A. Endalew, Y. Kiros, R. Zanzi, Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO), Energy 36 (2011) 2693-2700.

S. Lim, K. Lee, Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study, Appl Energ 103 (2013) 712-720.

http://www.sener.gob.mx/

A. Apostolakou, C. Marazioti, A. Kookos, Techno-economic analysis of a biodiesel production process from vegetable oils, Fuel Process Technol 90 (2009) 1023-1031.

M. Hass, A. McAloon, W. Yee, T. Foglia, A process model to estimate biodiesel production costs, Bioresource Technol 97 (2009) 671-678.

S. Lee, D. Posarac, N. Ellis, Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol, Chem Eng Res Des 89 (2011) 2626-2642.

D. Carvalho, A. Steidle, P. Martins, Economic simulation of biodiesel production: SIMB-E tool, Energ Econ 6 (2011) 1138-1145.

J. Islas, F. Manzini, O. Masera, A prospective study of bioenergy use in Mexico, Energy 32 (2007) 2306-2320.

J. Sacramento, G. Romero, E. Cortés, E. Pech, S. Blanco, Diagnóstico del desarrollo de biorefinerías en México, Rev Mex Ing Quím 9 (2010), 261-283.

http://www.bioenergeticos.gob.mx/index.php/biodiesel/costos-del-proceso-de-produccion.html


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize