Spectroscopic Studies on the Degradation of Methylene Blue by Using TiO2 and TiO2 - (x) ZnFe2O4

Violeta Dimitrova Kassabova-Zhetcheva(1*), Lilyana Parvanova Pavlova(2)

(1) University of Chemical Technology and Metallurgy (UCTM), Department Technology of Silicates, Bulgaria
(2) UCTM, Department Technology of Silicates, Bulgaria
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Titanium dioxide (TiO2) and nanocomposites of TiO2 – (x) Zinc Ferrite (ZnFe2O4); (x = 0.01, 0.04 and 0.06 mole fractions) have been synthesized by complex polymerization process involving peroxy species. The used nanometric ZnFe2O4 was previously prepared. The materials have been characterized through X-ray diffraction (XRD) and Electron Paramagnetic Resonance (EPR). Photo-catalytic action of synthesized materials has been evaluated by the Ultraviolet - Visible (UV-Vis) spectroscopy through degradation of pollution model Methylene Blue (MB). Optical thresholds have been measured by applying Ultraviolet - Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The addition of previously synthesized ZnFe2O4 contributes to the extension of photo-response in the visible range of light but this phenomenon differs from previous studies because it does not cause higher photo-catalytic action compared to TiO2 derived by the same method. UV-Vis DRS studies give reason to assume that the enhanced photo-catalytic action of ТiO2 - (X) ZnFe2O4 composites compared to that of TiO2 is probably due to the accidental inclusions of ferric ions in the lattice of TiO2, rather than charge transfer due to heterojunction band alignment, which was claimed in prior studies. The basis for this assumption is the appearance of absorption threshold of all composite materials around 450 nm, which is not typical, neither for Zn-ferrite nor for TiO2
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Titanium Dioxide; Nanocomposites; Visible Light-Activated Catalysis; Zinc Ferrite; Methylene Blue

Full Text:



Z H.Yuan, L.D. Zhang, Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite, J. Mater. Chem . 11 (2001) 1265 -1268.

Y. Zheng, J. T. Liu, W. J. Qian and J. H. Gao, Photocatalytic performance of plasma sprayed ZnFe2O4 - TiO2 coatings, Acta Metall. Sinica (Engl. Lett., 18 (2005) 363 – 368.

J. Liu, Y. Zheng, X. Zhao and C. Ding, Photocatalytic performance of plasma sprayed ZnFe2O4 - TiO2 coatings, Mater. Sci. Forum, 486-487 (2005) 69-72.

Y. Zheng, J. Liu, W. Wu and C. Ding, Photocatalytic performance of plasma sprayed ZnFe2O4 - TiO2 coatings, Surf. Coat. Tech., 200 (2005) 2398-2402.

S.S. Srinivasan, J. Wade and E. K. Stefanakos, Synthesis and Characterization of Photocatalytic TiO2-ZnFe2O4 Nanoparticles, J. Nanomater., 2006, (2006) 1- 4.

P. Cheng, C. Deng, M. Gu and W. Shangguan, Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation, Chem. Mater. Sci. 42 (2007) 9239-9244.

Z. Baoping, Z. Jinlong and C. Feng, Preparation and characterization of magnetic TiO2/ ZnFe2O4 photocatalyst by a sol-gel method, Res. Chem. Intermed. 34 (2008) 375-380.

X. Chen, Z. Shao, Y. Tian and X. Yang, Preparation and photocatalytic property of nanoscale TiO2/ ZnFe2O4 composites, Chinese J. Mater. Res. 22 (2008) 353-356.

S. Xu, D. Feng and W.Shangguan, Praparation and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst, J. Phys. Chem. C 113 (2009) 2463-2467.

H. Narayan, H. Alemu, L. Machel, M. Sekota, M. Thakurdesal and T. K. Gundu Rao, Role of particle size in visible light photocatalysis of Congo Red using TiO2.[ZnFe2O4]x nanocomposites, Bull. Mater. Sci. 32 (2009) 499–506.

E. Moreira, L.A. Fraga, M.H. Mendonça, O.C. Monteiro, Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4–TiO2 nanocomposite material, J.Nanopart.Res. 14 (2012) 937-947.

M. Pelaez, N.T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M. H. Entezari, D. D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental 125 (2012) 331– 349.

D.H. Khandelwal, R. Ameta, Use of Photo-Fenton Reagent in the Degradation of Basic Yellow 2 in Aqueous Medium, Res. J. Recent Sci. 2 (2013) 39-43.

T. Zhang, T. Oyama, A. Aoshima, H. Hidaka , J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation, J. Photochem. Photobiol. A: Chem. 140 (2001) 163–172.

N. Shimizu, C. Ogino, M. F.Dadjour, T. Murata, Sonocatalytic degradation of methylene blue with TiO2 pellets in water, Ultrason. Sonochem. 14 (2007) 184–190.

T. Preočanin, N. Kallay, Point of Zero Charge and Surface Charge Density of TiO2 in Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration, Croatica Chem. Acta 79 (2006) 95-106.

A.Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions, Appl. Catal. B: Environmental 54 (2004) 19–24.

C. M. Eggleston, N. Khare, D. M. Lovelace, Cytochrome c interaction with hematite (α-Fe2O3) surfaces, J. El. Spectrosc. Rel. Phenom. 150 (2006) 220–227.

B. Sun, P. G. Smirniotis, Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, Catal. Today 88 (2003) 49–59.

J. S. Jang,P. H. Borse, J. S. Lee, K. T. Lim, O.-S. Jung, E. D. Jeong, J. S. Bae, and H. G. Kim, Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3, Bull. Korean Chem. Soc 32 (2011) 95-99.

V. D. Kassabova-Zhetcheva, L. P. Pavlova, B. I. Samuneva, Z. P. Cherkezova-Zheleva, I. G. Mitov, M. T. Mikhov., Characterization of superparamagnetic MgxZn1−xFe2O4 powders, Cent. Eur. J. Chem. 5 (2007) 107-117.

S. Komarneni, R. Roy, E. A. Breval, New Method of Making Titania Gels and Their Microstructure, J. Amer. Ceram. Soc, 68 (1985) C41-C42.

K. N. P. Kumar, Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites, Scripta Metall.Mater. 32 (1995) 873-877.

N. Motohashi (Ed.), R.R. Gupta (Ser. Ed.) Bioactive heterocycles VII: Flavonoids and Anthocyanins in plants, and Latest Bioactive heterocycles II. , Topics in heterocyclic chemistry 16, (Springer, 2009, p.161)

T. Chen, Y. Zheng, J. M. Lin, G. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry, J. Am. Soc. Mass. Spectrom. 19 (2008) 997-1003.

F. T. G. Vieira, D. S. Melo, S. J. G. Lima, E. Longo, C. A. Paskocimas, W. Silva Jr, A. G. Souza, I. M. G. Santos, The influence of temperature on the color of TiO2:Cr pigments, Mater. Res. Bull. 44 (2009) 1086–1092.

S. S. Shinde, R. A. Bansode, C. H. Bhosale, K. Y. Rajpure, Physical properties of hematite α -Fe2O3 thin films: application to photoelectrochemical solar cells Journal of Semiconductors, . 32 ( 2011) 013001-1 - 013001-8.

J. Wade, An Investigation of TiO2-ZnFe2O4 Nanocomposites for Visible Light Photocatalysis, PhD dissertation, South Florida Univ., 2005.

P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, N. Wetchakun, Highly Efficient Visible-Light-Induced Photocatalytic Activity of Fe-doped TiO2 Eng. J. 16 (2012) 143-151.


  • There are currently no refbacks.

Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize