Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical and Mathematical Modeling of an Unsteady Heat Transfer within a Spherical Cavity: Applications Laser in Medicine


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v8i4.12429

Abstract


The main purpose of this work is to establish a numerical and mathematical modeling of heat transfer phenomenon in spherical cavities in order to model biological tissues. The idea of this study is to address the medical need to know the maximum amount of heat that a human tissue can withstand from an outside treatment session to minimize the side effects that a patient may suffer from after an hypothermic treatment such as removal of a tumor by laser. The studied phenomenon is governed by mathematical equations whose numerical solution allowed the determination of the temperature profile in different layers of the skin (epidermis, dermis, subcutaneous tissue).We have studied the influence of certain temperature parameters on laser, namely: power, spot diameter and irradiation time.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Heat Transfer; Spherical Cavity; Finite Volume Method; Mathematical and Numerical Modeling; Laser; Tissue Environment

Full Text:

PDF


References


M. H. Belghazi, Modélisation analytique du transfert de la chaleur dans un matériau bicouche en contact imparfait et soumis à une source de chaleur en mouvement, PhD. Limoges Univ., Faculté des Sciences et Techniques, 2008.

L.V. Belle, Analyse, modélisation et simulation de l'apparition de contraintes en fusion laser métallique, INSA de Lyon, 2015.

F. Balemboisand, S. Forget, Le laser : fondamentaux; lasers et optique non linéaire, Optique pour l’ingénieur, 2007.

S. Faure, Etude de l'interaction rayonnement-matière dans un milieu granulaire en vue de l'application au procédé de frittage laser, Matériaux Céramiques et Traitements de Surface, Ecole Nationale Supérieure de Céramique Industrielle, Thèse 26, 2004.

C.F. Bohren, R. Huffman, Absorption and scattering of light by small particles (éd. Wiley-Interscience, 1983).
http://dx.doi.org/10.1002/9783527618156

M. Belcadi, Modélisation Théorique et Numérique de l’usinage de l’Alumine par Combinaison du Laser et Micro-ondes, Thèse de Doctorat, Université Mohamed V, 2015.

A. Nordström, Determination of the Optical Properties of a Paperboard Packaging Material for Laser Applications, Tetra Pak Packaging Solutions AB Development & Engineering And Atomic Physics Division Lund Institute of Technology, 2007.

J.M. Brunetaud, Les mécanismes d'interaction laser - tissus vivants, 2002.

S. Gabay and al, Modeling the Assessment of port wine stain parameters from skin surface temperature following a diagnostic laser pulse, Lasers in surgery and medicine, vol. 20, pp. 179-187, 1997.
http://dx.doi.org/10.1002/(sici)1096-9101(1997)20:2%3C179::aid-lsm9%3E3.0.co;2-n

M.V. Allmen, Laser beam interactions with materials, Berlin, Spring, 1987.

W.J. Chang and T.H. Fang, Modeling of solid-liquid interface during laser processing using inverse methodology, App. Phys. B 80, 373-376,(2005).
http://dx.doi.org/10.1007/s00340-005-1740-6

M. Kervella, T. Tarvainen, A. Humeau and J. P. L’Huillier, Comparaison de deux modèles hybrides simulant la propagation de la lumière dans les tissus biologiques, ITBM-RBM, 28, 80-85, 2007.
http://dx.doi.org/10.1016/j.rbmret.2007.05.001

M. Benhamouda, Etude, conception et modélisation de la diffusion de la chaleur dans les tissus biologiques, Thèse de Doctorat de l’Université du Québec à Trois-Rivières, 2015.

Tricha, M., Gueraoui, K., Zeggwagh, G., Mzerd, A., New Numerical and Theoretical Approaches to Study the Blood Flows at Microcirculation Level, (2014) International Review of Mechanical Engineering (IREME), 8 (6), pp. 1043-1046.
http://dx.doi.org/10.15866/ireme.v8i6.2725

Sammouda, M., Gueraoui, K., Driouich, M., El Hammoumi, A., Brahim, A.I., The variable porosity effect on the natural convection in a non-darcy porous media, (2011) International Review on Modelling and Simulations (IREMOS), 4 (5), pp. 2701-2707.

Ghouli, A., Gueraoui, K., Walid, M., Aberdane, I., Hammoumi, A.E., Kerroum, M., Zeggwagh, G., Haddad, Y.M., Numerical study of pollutant propagation process in homogeneous porous unsaturated media, (2009) International Review of Mechanical Engineering (IREME), 3 (3), pp. 358-361.

Gueraoui, K., Hammoumi, A., Zeggwagh, G.(1996), Ecoulements pulsés de fluides inélastiques en conduites déformables poreuses et anisotropes, C.R. Acad. Sci., Paris, 323, série B, pp. 825-832.

M. Driouich, K. Gueraoui,M. Sammouda and Y.M. Haddad, The Effect of the Rheological Characteristics of the Molten Polymer on its Flow in Rigid Cylindrical Tubes, Adv. Studies Theor. Phys., 6(12), 569-586, 2012.

Sammouda, M., Gueraoui, K., Driouich, M., El-Hammoumi, A., Iben Brahim, A., Non-Darcy natural convection heat transfer along a vertical cylinder filled by a porous media with variable porosity, (2012) International Review of Mechanical Engineering (IREME), 6 (4), pp. 698-704.

Sammouda, M., Gueraoui, K., Driouich, M., Ghouli, A., Dhiri, A., Double Diffusive Natural Convection in Non-Darcy Porous Media with Non-Uniform Porosity, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1021-1030.

R. Chammami, M. Taibi, M. Hami, M. Kerroum, K. Gueraoui and G. Zeggwagh, Influence de la nature de la paroi sur un modèle d'écoulements pulsés de fluides diphasiques. Application à la microcirculation, Influence of the kind of duct on two-fluid pulsatile flows model. Application to the microcirculation, Houille Blanche, 2001.

M. Taibi, R. Chammami, M. Kerroum,K. Gueraoui, A. El Hammoumi and G. Zeggwagh, Modélisations des écoulements pulsés à deux phases, en conduites déformables ou rigides, Pulsating flow of two phases in deformable or rigide tubes, ITBM-RBM, 2002.
http://dx.doi.org/10.1016/s1297-9562(02)80012-2

Aberdane, I., Gueraoui, K., Taibi, M., Ghouli, A., El-Hammoumi, A., Cherraj, M., Kerroum, M., Walid, M., Fihri, O.F., Haddad, Y.M., Two-dimensional theoretical and numerical approach of pollutant transport in the lowest layers of the atmosphere, (2009) International Review of Mechanical Engineering (IREME), 3 (4), pp. 494-502.

El Khaoudi, F., Gueraoui, K., Driouich, M., Sammouda, M., Numerical and Theoretical Modeling of Natural Convection of Nanofluids in a Vertical Rectangular Cavity, (2014) International Review on Modelling and Simulations (IREMOS), 7 (2), pp. 350-355.
http://dx.doi.org/10.15866/iremos.v7i2.585

S. Men-La-Yakhaf, K. Gueraoui and M. Driouich, New numerical and mathematical code reactive mass transfer and heat storage facilities of Argan waste, Advanced Studies in Theoretical Physics, 8(10), 485 - 498, 2014.
http://dx.doi.org/10.12988/astp.2014.4331

Men-la-yakhaf, S., Gueraoui, K., Maaouni, A., Driouich, M., Numerical and Mathematical Modeling of Reactive Mass Transfer and Heat Storage Installations of Argan Waste, (2014) International Review of Mechanical Engineering (IREME), 8 (1), pp. 236-240.
http://dx.doi.org/10.15866/ireme.v8i1.1265

K. Gueraoui, A. El Hammoumi and G. Zeggwagh, A numerical solution of pulsatile flow of an inelastic fluid through anisotropic porous viscoelastic pipes, Houille Blanche, 1998.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize