Open Access Open Access  Restricted Access Subscription or Fee Access

Finite Element Analysis of Slope Stability Reinforced with Pile


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v8i1.11147

Abstract


Various practical experimental designs and analysis processes of slope stability and its reinforcements have been suggested including: geotextiles, nails, and piles; this latter have been used widely and proven to be a functional and safe solution as a preventive measure in the stable slopes as well as for active landslides stabilizing. Numerical analyses based on the position and length of the pile in the slope, are conducted to determine the most favorable pile position. To obtain a comprehensive understanding of slope displacement behavior with, and without a reinforcing pile, we present in this study the results which are based on the Finite Element Analysis of slope stabilization analyses in terms of factor of safety and slide surface shape. First, the case of natural slope without pile is considered; we calculate the safety factor and the associated critical failure surface. On the other hand, we investigate the slope reinforcement by using a single pile.  The parametric analysis shows that the pile should be located in the middle part of the slope to achieve the maximum safety factor. The analysis indicates also that the pile has a major influence on the shape of the failure surface. Finally, the important effects of shear strength parameters on the piled slope are examined.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Slope Stability; Analysis; Finite Element Method; Factor of Safety; Reinforcement; Pile

Full Text:

PDF


References


A Mohamed, A. Hamed, Analysis of pile stabilized slopes based on soil–pile interaction, Computers and Geotechnics, pp 85–97, 2012.
http://dx.doi.org/10.1016/j.compgeo.2011.09.001

R. Haefeli, The Stability of Slopes Acted Upon by Parallel Seepage, Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering. Rotterdam. Vol. 1, pp. 57–62. 1948.
http://dx.doi.org/10.1007/bf01704635

D.W. Taylor, Stability of Earth Slopes. Journal of the Boston Society of Civil Engi¬neers; Vol. 24, pp. 197-246, 1937.
http://dx.doi.org/10.4018/978-1-4666-6505-7.ch009

L.W. Abramson, S.L. Thomas, S. Sunil, Slope stability and stabilization methods: (Second Edition by John Wiley & Sons: Inc. New York. 2002).
http://dx.doi.org/10.1201/b17015-3

W. Fellenius, Calculation of stability of earth dams. Transactions, 2nd Congress on Large Dams, Washington, DC. vo1445 - 462, 1936.
http://dx.doi.org/10.4324/9780203477182_chapter_19

A.W. Bishop, The use of slip circle in the stability analysis of slopes. Geotechnique, 5(1):7-17, 1955.
http://dx.doi.org/10.1680/geot.1955.5.1.7

N.R. Morgenstern, V.E. Price, The analysis of the stability of general slip surfaces. Geotechnique. London, 15(1), 79-93, 1965.
http://dx.doi.org/10.1680/geot.1965.15.1.79

E. Spencer, A method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique. London, 17(1), 11-26, 1967.
http://dx.doi.org/10.1680/geot.1967.17.1.11

N. Janbu, Slope stability computations. Soil Mech. and Found. Rep: The Technical University of Norway. 1968.
http://dx.doi.org/10.1007/bf01703781

J. Lowe, L. Karafiath, Stability of earth dams upon drawdown. Proc: 1st Pan-Am. Conf. on Soil Mech. and Found. Engrg., Mexico City; 2, 537-552, 1960.
http://dx.doi.org/10.1016/0022-4898(73)90034-7

S.K. Sarma, Stability Analysis of Embankment and Slopes. Geotechnique, 23:423‐33, 1973.
http://dx.doi.org/10.1680/geot.1973.23.3.423

D.G. Fredlund, J. Krahn Comparison of slope stability methods of analysis. Can Geotech J, 14(3) 429-439, 1977.
http://dx.doi.org/10.1139/t77-045

Transportation Research Board. Landslides: Investigation and Mitigation. Washington, D.C., (USA): TRB Special Report 247, National Academy Press. 1996.
http://dx.doi.org/10.17226/13240

J.M. Duncan, State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122:577-596. 1996.
http://dx.doi.org/10.1061/(asce)0733-9410(1996)122:7(577)

O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method. (4th edition vol. 2, McGraw-Hill, London. 1991).
http://dx.doi.org/10.1002/zamm.19800600811

M.A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures. (John Wiley, Chichester, 1991).
http://dx.doi.org/10.1002/9781118375938

E. Hinton, D.R.J Owen,. Finite Elements in Plasticity: (Theory and Practice. Pineridge Press, Swansea, Wales. 1980).
http://dx.doi.org/10.1002/nme.1620170712

K.J. Bathe, Finite Element Procedures, (Prentice-Hall, New Jersey. 1996).
http://dx.doi.org/10.1002/nag.1610070412

O.C. Zienkiewicz, C. Humpheson, R.W. Lewis, Associated and nonassociated viscoplasticity and plasticity in soil mechanics, Géotechnique, 25(4):671–89, 1975.
http://dx.doi.org/10.1680/geot.1975.25.4.671

I.M. Smith, D.V. Griffiths, Programming the finite element method. (2nd ed. John Wiley & Sons; 1982).
http://dx.doi.org/10.1002/9781119189237.ch3

D.J. Naylor, Finite elements and slope stability, Proceedings of the NATO Advanced Study Institute, Lisbon, Portugal, 1981. Numer. Methods Geomech, 229–44, 1982.
http://dx.doi.org/10.1007/978-94-009-7895-9_10

I.B. Donald, S.K. Giam, Application of the nodal displacement method to slope stability analysis. In: Proceedings of the 5th Australia–New Zealand conference on geomechanics, Sydney, Australia, pp 456–60, 1988.
http://dx.doi.org/10.1016/0886-7798(88)90110-1

K. Ugai, A method of calculation of total factor of safety of slopes by elastoplastic FEM. Soils Foundations, 29(2):190–5, 1989.
http://dx.doi.org/10.3208/sandf1972.29.2_190

T. Matsui, K.C.San, Finite element slope stability analysis by shear strength reduction technique. Soils Found, 32(1):59–70, 1992.
http://dx.doi.org/10.3208/sandf1972.32.59

Ugai K, D. Leshchinsky, Three-dimensional limit equilibrium and finite element analysis: a comparison of results. Soils Found, 35(4):1–7, 1995.
http://dx.doi.org/10.3208/sandf.35.4_1

E. Song, Finite element analysis of safety factor for soil structures, Chinese J Geotech Eng, 19(2):1–7, 1997.
http://dx.doi.org/10.1007/s10706-017-0188-x

E.M. Dawson, W.H. Roth, A. Drescher, Slope stability analysis by strength reduction, Géotechnique, 49(6):835–40, 1999.
http://dx.doi.org/10.1680/geot.1999.49.6.835

D.V. Griffiths, PA. Lane, Slope stability analysis by finite elements. Géotechnique, 49(3):387–403, 1999.
http://dx.doi.org/10.1680/geot.1999.49.3.387

R.E. Hammah, T.E. Yacoub, B. Corkum, et al. A Comparison of finite element slope stability analysis with conventional limit-equilibrium investigation. In: Proceedings of the 58th Canadian geotechnical and 6th joint IAH-CNC and CGS groundwater specialty conferences saskatoon, Saskatchewan, Canada, September; 2005.
http://dx.doi.org/10.1139/t08-010

Y.R. Zheng, S.Y. Zhao, W.X. Kong, et al. Geotechnical engineering limit analysis using finite element method. Rock Soil Mech, 26(1):163–8, 2005.
http://dx.doi.org/10.3724/sp.j.1235.2012.00028

H.A Taleb, A. Berga, Etude Paramétrique par la Méthode de L'équilibre Limite du Couplage (c, φ) et son Influence sur la Stabilité au Glissement. 1st International Seminar on Civil Engineering, University of Bechar, 2013.
http://dx.doi.org/10.1007/978-3-662-29364-5_94

H.A Taleb, A. Berga, Evaluation d’un glissement avec comparaison entre MEL et MEF sous l’étude paramétrique du couplage "c, φ"et leurs effets sur le facteur de sécurité et la surface de glissement. Colloque International « Caractérisation et Modélisation des Matériaux et Structures » CMMS14. Université Mouloud Mammeri de Tizi-Ouzou. 2014.
http://dx.doi.org/10.4267/2042/28856

C.A. Tang, Numerical simulation on progressive failure leading to collapse and associated seismicity, Int J Rock Mech Min Sci, 34(2):249–61, 1997.
http://dx.doi.org/10.1016/s0148-9062(96)00039-3

C.S. Colby, K.S. Young, Slope stability analysis using finite element techniques. 13 th Iowa ASCE Geotechnique Conference, USA. 1999.
http://dx.doi.org/10.1680/geot.1999.49.5.585

L.C. Li, C.A. Tang, W.C. Zhu, et al. Numerical analysis of slope stability based on the gravity increase method, Journal of Computers and Geotechnics. 2009.
http://dx.doi.org/10.1016/j.compgeo.2009.06.004

E. D’Appolonia, R. Alperstein, D.J. D’Appolonia, Behavior of a colluvial slope, J Soil Mech Found Div, ASCE, 93(SM4):447–73, 1967.
http://dx.doi.org/10.1061/(asce)0733-9410(1991)117:12(1967.2)

E.E. De Beer, M. Wallays, Stabilization of a slope in schist by means of bored piles reinforced with steel beams. In: Proceeding of 2nd international congress rock on mechcanics,; vol. 3; p. 361–9. 1970.
http://dx.doi.org/10.1016/0148-9062(88)92547-8

M. Fukuoka, The effects of horizontal loads on piles due to landslides. In: Proceeding of 10th specification session, 9th international conference on soil mechanics and foundation engineering, Tokyo.pp. 27–42, 1977.
http://dx.doi.org/10.1016/0148-9062(80)90159-x

T. Ito, T. Matsui, Methods to estimate lateral force acting on stabilizing piles, Soils Found, 15(4):43–60, 1975.
http://dx.doi.org/10.3208/sandf1972.15.4_43

T. Ito, T. Matsui, W.P. Hong, Design method for stabilizing piles against landslide – one row of piles. Soils Found, 21(1):21–37, 1981.
http://dx.doi.org/10.3208/sandf1972.21.21

T. Ito, T. Matsui, W.P. Hong, Extended design method for multi-row stabilizing piles against landslide. Soils Found, 22(1):1–13, 1982.
http://dx.doi.org/10.3208/sandf1972.22.1

L.C. Reese, S.T. Wang, J.L. Fouse, Use of drilled shafts in stabilising a slope. In: Seed RB, Boulanger RW, editors. Stability and performance of slopes and embankments – II, vol. 2. American Society of Civil Engineers, pp. 1318–32, 1992.
http://dx.doi.org/10.3208/sandf.42.2_93

M.C. Wang, A.H. Wu, D.J. Scheessele, Stress and deformation in single piles due to lateral movement of surrounding soils. In: Raymond Lunggren, editor. Behavior of deep foundations, ASTM 670. American Society for Testing and Materials, pp. 578–91, 1979.
http://dx.doi.org/10.1520/stp33753s

T. Taniguchi, Landslides in reservoirs. Proc. 3rd. Asian Regional Conf. Soil Mechs. and Fndns. Eng., Bangkok, Vol. 1, pp. 258-261, 1967.
http://dx.doi.org/10.1080/03602530903052464

W.A. Bulley, Cylinder pile retaining wall construction- Seattle Freeway. Roads and Streets Conference, Seattle, Washington. 1965.
http://dx.doi.org/10.1177/001979396501900115

J.H. Offenberger, Hillside stabilized with concrete cylinder pile retaining wall. Public Works, Vol. 112, No. 9, pp. 82-86, 1981.
http://dx.doi.org/10.1061/40903(222)3

W. Jinoh, Y. Kwangho, J. Sangseom, et al. Coupled effects in stability analysis of pile–slope systems. Computers and Geotechnics, 32 304–315, 2005.
http://dx.doi.org/10.1016/j.compgeo.2005.02.006

Shooshpasha, HA. Amirdehi, Evaluating the stability of slope reinforced with one row of free head piles. Arab J Geosci, 2014.
http://dx.doi.org/10.1007/s12517-014-1272-7

E.E. De Beer, M. Wallays, Forces induced in piles by unsymmetrical surcharges on the soil round the piles. Conf Soil Mech Found Eng, 1:325–32, 1972.
http://dx.doi.org/10.1007/bf01706173

G.P. Tschebotarioff Lateral pressure of clayey soils on structures. In: Proceedings of the 8th ICSMFE Specialty Session 5, Moscow, vol. 4(3). p. 227–80, 1973.
http://dx.doi.org/10.1002/9781118996096.ch14

T. Ito, T. Matsui, Methods to estimate lateral force acting on stabilizing piles. Soils Found, 15(4):43–59, 1975.
http://dx.doi.org/10.3208/sandf1972.15.4_43

F, Baguelin, R. Frank, Y.H. Said, Theoretical study of lateral reaction mechanism of piles. Geotechnique, 27(3):405–34, 1977.
http://dx.doi.org/10.1680/geot.1977.27.3.405

F. Bourges, R. Frank, C. Mieussens, Calcul des efforts et des déplacements engendres par des poussées latérales de sol sur les pieux. Note Technique. Paris: Laboratoire Central des Ponts et Chaussés; 1980.
http://dx.doi.org/10.1680/mob.33474

S.M. Springman Lateral loading on piles due to simulated embankment construction. PhD thesis: University of Cambridge; 1989.
http://dx.doi.org/10.1139/cgj-2012-0468

H.G. Poulos Design of reinforcing piles to increase slope stability. Can Geotech J, 32:808–18, 1995.
http://dx.doi.org/10.1139/t95-078

S, Hassiotis, J.L. Chameau, M. Gunaratne, Design method for stabilization of slopes with piles. J Geotech Geoenviron Eng, ASCE, 123(4):314–23, 1997.
http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:4(314)

L.T. Chen, H.G. Poulos, Piles subjected to lateral soil movements. J Geotech Geoenviron Eng, ASCE, 123(9):802–11, 1997.
http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:9(802)

S. Jeong, B. Kim, J. Won, et al. Uncoupled analysis of stabilizing piles in weathered slopes. Comput Geotech., 30:671–82, 2003.
http://dx.doi.org/10.1016/j.compgeo.2003.07.002

Rowe RK, Poulos HG. A method for predicting the effect of piles on slope behavior. In: Proceedings of the 3rd ICONMIG, Aachen, vol. 3, Pp, 1073–85, 1979.
http://dx.doi.org/10.1520/gtj10339j

M.W. Oakland, J.L.A. Chameau, Finite-element analysis of drilled piers used for slope stabilization. Laterally Loaded Foundation. American Society for Testing and Materials, pp. 182–93. 1984.
http://dx.doi.org/10.1520/stp36821s

M.F. Bransby, S.M. Springman, 3-D finite element modelling of pile groups adjacent to surcharge loads. Comput Geotech, 19(4):301–24, 1996.
http://dx.doi.org/10.1016/0266-352x(95)00001-q

A.T.C. Goh, C.I. The, K.S. Wong, Analysis of piles subjected to embankment induced lateral soil movements. J Geotech Geoenviron Eng, ASCE, 123(4):312–23, 1997.
http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:9(792)

H.G. Poulos, L.T. Chen Pile response due to excavation-induced lateral soil movement. J Geotech Geoenviron Eng, ASCE, 123(2):94–9, 1997.
http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:2(94)

T. Ito, T. Matsui. W.P. Hong, Design method for the stability analysis of the slope with landing pier. Soils and Foundations, 19(4):43–57, 1979.
http://dx.doi.org/10.3208/sandf1972.19.4_43

C.Y. Lee, T.S. Hull, H.G. Poulos, Simplified pile-slope stability analysis. Computers and Geotechnics, 17:1–16, 1995.
http://dx.doi.org/10.1016/0266-352x(95)91300-s

A.K. Chugh, Procedure for design of restraining structures for slope stabilization problems. Geotechnical Engineering, 13:223–34, 1982.
http://dx.doi.org/10.1007/978-3-642-41714-6_194524

S. Zeng, R. Liang, Stability analysis of drilled shafts reinforced slope. Soils Found, 42(2):93–102, 2002.
http://dx.doi.org/10.3208/sandf.42.2_93

M. Yamin, R.Y.Liang, Limiting equilibrium method for slope drilled shaft system. Int J Numer Anal Meth Geomech, 34(10):1063–75, 2010.
http://dx.doi.org/10.1002/nag.852

G, Zhang. L.Wang, Stability analysis of strain-softening slope reinforced with stabilizing piles. J Geotech Geoenvironmental Eng, 136(11):1578–1582, 2010.
http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000368

E. Ausilio, E. Conte, G. Dente, Stability analysis of slopes reinforced with piles. Comput Geotech, 28(8):591–611, 2001.
http://dx.doi.org/10.1016/s0266-352x(01)00013-1

T.K. Nian, G.Q. Chen, M.T. Luan, et al. Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogeneous and anisotropic soils. Can Geotech J, 45(8):1092–103, 2008.
http://dx.doi.org/10.1139/t08-042

L.T. Chen, H.G. Poulos, Piles subjected to lateral soil movements. J Geotech Geoenviron Eng, 123(9):802–11, 1997.
http://dx.doi.org/10.1061/(asce)1090-0241(1999)125:6(541)

C.Y. Lee, H.G. Poulos, T.S. Hull, Effect of seafloor instability on offshore pile foundations. Can Geotech J, 28(5):729–37, 1991.
http://dx.doi.org/10.1139/t91-087

H.G. Poulos, Analysis of piles in soil undergoing lateral movement. J Soil Mech Found Div, ASCE, 99(SM5):391–406, 1973.
http://dx.doi.org/10.1016/0148-9062(74)91891-9

H.G. Poulos, E.H. Davis. Pile foundation analysis and design. (New York, etc.: John Wiley & Sons. 1980).
http://dx.doi.org/10.1002/aic.690260330

X. Li, S. He, Y. Luo, et al. Numerical studies of the position of piles in slope stabilization. Geomechanics and Geoengineering: An International Journal, 6:3, 209-215, 2011.
http://dx.doi.org/10.1080/17486025.2011.578668

J. Won, K. You, S. Jeong, Coupled effects in stability analysis of pile-slope systems. Computers and Geotech, 32, 304–315, 2005.
http://dx.doi.org/10.1016/j.compgeo.2005.02.006

S, Sun, B. Zhu, X. Bian, Strength reduction analysis for the stability of pile–slope system. Adv Sci Lett, 4(8–10):3146–3150, 2011.
http://dx.doi.org/10.1166/asl.2011.1282

M. K. Kelesoglu, The Evaluation of Three-Dimensional Effects on Slope Stability by the Strength Reduction Method. KSCE Journal of Civil Engineering, 20(1):229-242 2015.
http://dx.doi.org/10.1007/s12205-015-0686-4

F. Cai, K. Ugai, Numerical analysis of the stability of a slope reinforced with piles. Soils and Foundations, 40(1):73–84, 2000.
http://dx.doi.org/10.3208/sandf.40.73

X. Jiancong, N. Fusheng, Safety factor calculation of soil slope reinforced with piles based on Hill’s model theory. Environ Earth Sci, 71:3423–3428, 2014.
http://dx.doi.org/10.1007/s12665-013-2730-3

A. Abdelaziz, D. Hafez, A. Hussein, The effect of pile parameters on the factor of safety of piled-slopes using 3D numerical analysis, Housing and Building National Research Center, 2015.
http://dx.doi.org/10.1016/j.hbrcj.2015.06.002

S. Xiao, A simplified approach for stability analysis of slopes reinforced with one row of embedded stabilizing piles, Bull Eng Geol Environ, 2016.
http://dx.doi.org/10.1007/s10064-016-0934-y

W.B. Wei, Y.M. Cheng, L. Li, Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Computers and Geotechnics, 36 70–80, 2009.
http://dx.doi.org/10.1016/j.compgeo.2008.03.003


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize