Open Access Open Access  Restricted Access Subscription or Fee Access

Multi-Tuned Radiofrequency Coil Using Microfluidically Tunable Capacitor for Magnetic Resonance Imaging/Spectroscopy at 7-Tesla


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v9i6.17834

Abstract


Multi-nuclear magnetic resonance imaging and spectroscopy are considered valuable tools due to their capability of diagnosis and monitoring of several diseases. They require multi-nuclear Radiofrequency coils in order to interrogate the proton (1H) and other nuclei (X-nuclei) in the human body. Such coils provide anatomical images by acquiring (1H) spectra and metabolites information by acquiring spectra of X-nuclei. In addition, the high signal received from proton (1H) is used for B0 shimming purposes. However, the signal strength for these X-nuclei is too low. Hence, the signal-to-noise-ratio is low. The main advantages of using multinuclear Radiofrequency coils are that they speed up the imaging process and reduce the spatial positioning error that might arise when replacing the Radiofrequency coil in order to perform imaging of different nuclei. In addition, comfortable environment will be provided for patients by avoiding any inconvenience of moving out and asking to replace the coils. In this paper, a multi-tunable microstrip transmission line Radiofrequency coil has been designed by using microfluidically tunable Radiofrequency capacitor. This capacitor offers a wide range of capacitance tuning which extends between Cmin=1.76 pF and Cmax=48.7 pF. Hence, a wide range of resonant frequencies (fmin=75 MHz - fmax=298 MHz) can be offered by this coil in order to excite several nuclei at a field strength of 7-Tesla.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Magnetic Resonance Imaging (MRI); Magnetic Resonance Spectroscopy (MRS); Microstrip Transmission Line RF Coil; Double-Tuned (DT); Microfluidically Tuned Capacitor (µTC)

Full Text:

PDF


References


R. Ouwerkerk, K. B. Bleich, J. S. Gillen, M. G. Pomper, and P. A. Bottomley, Tissue sodium concentration in human brain tumors as measured with 23Na MR Imaging, Radiology, vol. 227, no. 2, pp. 529–537, 2003.
https://doi.org/10.1148/radiol.2272020483

R. Ouwerkerk, M. A. Jacobs, K. J. Macura, A. C. Wolff, V. Stearns, S. D. Mezban, N. F. Khouri, D. A. Bluemke, and P. A. Bottomley, Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI, Breast cancer research and treatment, vol. 106, no. 2, pp. 151–160, 2007.
https://doi.org/10.1007/s10549-006-9485-4

K. R. Thulborn, D. Davis, J. Snyder, H. Yonas, and A. Kassam, Sodium MR Imaging of acute and subacute stroke for assessment of tissue viability, Neuroimaging Clinics, vol. 15, no. 3, pp. 639–653, 2005.
https://doi.org/10.1016/j.nic.2005.08.003

E. Mellon, D. Pilkinton, C. Clark, M. Elliott, W. Witschey, A. Borthakur, and R. Reddy, Sodium MR Imaging detection of mild alzheimer disease: preliminary study, American Journal of Neuroradiology, vol. 30, no. 5, pp. 978–984, 2009.
https://doi.org/10.3174/ajnr.a1495

N. Maril, Y. Rosen, G. H. Reynolds, A. Ivanishev, L. Ngo, and R. E. Lenkinski, Sodium MRI of the human kidney at 3 Tesla, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 56, no. 6, pp. 1229–1234, 2006.
https://doi.org/10.1002/mrm.21031

M. Meyerspeer, S. Robinson, C. I. Nabuurs, T. Scheenen, A. Schoisengeier, E. Unger, G. J. Kemp, and E. Moser, Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7T, Magnetic resonance in medicine, vol. 68, no. 6, pp. 1713–1723, 2012.
https://doi.org/10.1002/mrm.24205

D. L. Rothman, I. Magnusson, L. D. Katz, R. G. Shulman, and G. I. Shulman, Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR, Science, vol. 254, no. 5031, pp. 573–576, 1991.
https://doi.org/10.1126/science.1948033

F. Wetterling, M. H¨ogler, U. Molkenthin, S. Junge, L. Gallagher, I. M. Macrae, and A. J. Fagan, The design of a double-tuned two-port surface resonator and its application to in vivo Hydrogen-and Sodium-MRI, Journal of magnetic resonance, vol. 217, pp. 10–18, 2012.
https://doi.org/10.1016/j.jmr.2012.02.002

S.-D. Han, P. Heo, H.-J. Kim, H. Song, D. Kim, J.-H. Seo, Y. Ryu, Y. Noh, and K.-N. Kim, Double-layered dual-tuned RF coil using frequency-selectable PIN-diode control at 7-T MRI, Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol. 47, no. 4, p. e21363, 2017.
https://doi.org/10.1002/cmr.b.21363

L. T. Muftuler, G. Gulsen, K. D. Sezen, and O. Nalcioglu, Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T, Journal of Magnetic Resonance, vol. 155, no. 1, pp. 39–44, 2002.
https://doi.org/10.1006/jmre.2002.2510

D. T. McCormick, Z. Li, and N. Tien, Dielectric fluid immersed MEMS tunable capacitors, in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 1. IEEE, 2003, pp. 495–498.
https://doi.org/10.1109/mwsym.2003.1210984

E. M. Haacke, et al., Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss New York:, 1999, vol. 82.

A. M. Babsky, S. Topper, H. Zhang, Y. Gao, J. R. James, S. K. Hekmatyar, and N. Bansal, Evaluation of extraand intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 59, no. 3, pp. 485–491, 2008.
https://doi.org/10.1002/mrm.21568

M. S. Hussain, R. W. Stobbe, Y. A. Bhagat, D. Emery, K. S. Butcher, D. Manawadu, N. Rizvi, P. Maheshwari, J. Scozzafava, A. Shuaib et al., Sodium imaging intensity increases with time after human ischemic stroke, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 66, no. 1, pp. 55–62, 2009.
https://doi.org/10.1002/ana.21648

S. Trattnig, G. H. Welsch, V. Juras, P. Szomolanyi, M. E. Mayerhoefer, D. Stelzeneder, T. C. Mamisch, O. Bieri, K. Scheffler, and ˇ S. Zb`y, 23Na MR imaging at 7 T after knee matrix–associated autologous chondrocyte transplantation preliminary results, Radiology, vol. 257, no. 1, pp. 175–184, 2010.
https://doi.org/10.1148/radiol.10100279

R. Gruetter, G. Adriany, I.-Y. Choi, P.-G. Henry, H. Lei, and G. O¨ z, Localized in vivo 13C NMR spectroscopy of the brain, NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, vol. 16, no. 6-7, pp. 313–338, 2003.
https://doi.org/10.1002/nbm.841

P.-G. Henry, I. Tk´aˇc, and R. Gruetter, 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 50, no. 4, pp. 684–692, 2003.
https://doi.org/10.1002/mrm.10601

H. P. Hetherington, J. H. Kim, J. W. Pan, and D. D. Spencer, 1H and 31P spectroscopic imaging of epilepsy: spectroscopic and histologic correlations, Epilepsia, vol. 45, pp. 17–23, 2004.
https://doi.org/10.1111/j.0013-9580.2004.04004.x

X. Zhang, X. Zhu, H. Qiao, H. Liu, T. Vaughan, K. Ugurbil and W. Chen. A circular-polarized double-tuned (31P and 1H) TEM coil for human head MRI/MRS at 7T, Proc. Intl. Soc. Mag. Reson. Med., Toronto 423, 2003.

H. Waiczies, A. Kuehne, A. M. Nagel, D. Schuchardt, D. Lysiak, J. Rieger, and T. Niendorf. 8CH 19F/ 1H Transceiver Array for Lung Imaging at 7T (pTX), Proc. Intl. Soc. Mag. Reson. Med., Singapore, 2016.

G. Donati , E. S. Roig , and R.Gruetter, 13C MRS in human calf muscles at 7T using a double tuned 4 channel C-4 channel H transceiver phased array, Proc. Intl. Soc. Mag. Reson. Med., Singapore, 2016.

M. Rösler, R. Umathum, A. Nagel, Y. Gordon, P. Bachert, W. Semmler and F. Meise, A Double Resonant Solenoid Coil for 35Cl/ 23Na Imaging of the Rat Brain at a Whole Body 7 Tesla MRI, Proc. Intl. Soc. Mag. Reson. Med., Melbourne, 2012.

T. Platt, A. Korzowski, R. Umathum, and P. Bachert, Double-resonant 13c/1h coil system for 1H 13C in vivo NMR spectroscopy on a 7T whole-body MR tomography, 22nd Proc. Intl. Soc. MRM, p. 1346, 2014.

G. Isaac, M. D. Schnall, R. E. Lenkinski, and K. Vogele, A design for a double-tuned birdcage coil for use in an integrated MRI/MRS examination, Journal of Magnetic Resonance (1969), vol. 89, no. 1, pp. 41–50, 1990.
https://doi.org/10.1016/0022-2364(90)90160-b

G. X. Shen, F. E. Boada, and K. R. Thulborn, Dual-frequency, dual-quadrature, birdcage RF coil design with identical B1 pattern for sodium and proton imaging of the human brain at 1.5 T, Magnetic resonance in medicine, vol. 38, no. 5, pp. 717–725, 1997.
https://doi.org/10.1002/mrm.1910380507

Y. Pang, Z. Xie, D. Xu, D. A. Kelley, S. J. Nelson, D. B. Vigneron, and X. Zhang, A dual-tuned quadrature volume coil with mixed _λ/2 and _λ/4 microstrip resonators for multinuclear MRSI at 7 T, Magnetic resonance imaging, vol. 30, no. 2, pp. 290–298, 2012.
https://doi.org/10.1016/j.mri.2011.09.022

O. Rutledge, T. Kwak, P. Cao, and X. Zhang, Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T, Journal of Magnetic Resonance, vol. 267, pp. 15–21, 2016.
https://doi.org/10.1016/j.jmr.2016.04.001

J. R. Fitzsimmons, B. L. Beck, and H. Ralph Brooker, Double resonant quadrature birdcage, Magnetic resonance in medicine, vol. 30, no. 1, pp. 107–114, 1993.
https://doi.org/10.1002/mrm.1910300116

Y. Ha, C.-H. Choi, W. A. Worthoff, A. Shymanskaya, M. Sch¨oneck, A. Willuweit, J. Felder, and N. J. Shah, Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T, Journal of Magnetic Resonance, vol. 286, pp. 110–114, 2018.
https://doi.org/10.1016/j.jmr.2017.12.003

B. L. van de Bank1, S. Orzada, M. W. Lagemaat, A.K. Bitz, and T. W.J. Scheenen, 31P Birdcage insert for an 8-channel, multi-transmit, 1H coil at 7T, Proc. Intl. Soc. Mag. Reson. Med. 22, Milano, 2014.

S.-M. Hong, C.-H. Choi, J. Felder, and N. J. Shah, Dual-resonant helmet coil for 1H/31P at 3T MRI, Proc. Intl. Soc. Mag. Reson. Med. 26, Paris, 2018.

A. Hurshkainen1, A. Nikulin1, S. Glybovski1, C. Vilmen, et al., A genuine design for a dual-tuned 1H/31P1H/31P coil with no lumped elements operating at 4.7T, Proc. Intl. Soc. Mag. Reson. Med. 26, Paris, 2018.

S.-M. Hong, C.-H. Choi, J. Felder, A. W. Magill, and N. J. Shah, A bent dipole antenna and 4-channel loop array for 1H/31P brain application at 3 T MRI, Proc. Intl. Soc. Mag. Reson. Med. 26, Paris, 2018.
https://doi.org/10.1109/tmi.2018.2844462

A. Maunder, M. Rao, F. Robb, and J. Wild, RF coil design for multi-nuclear lung MRI of 19F fluorinated gases and 1H using MEMS, Proc. Intl. Soc. Mag. Reson. Med. 24, Paris, 2016.

C.-H. Choi, J. M. Hutchison, and D. J. Lurie, Design and construction of an actively frequency-switchable RF coil for field-dependent Magnetisation Transfer Contrast MRI with fast field-cycling, Journal of Magnetic Resonance, vol. 207, no. 1, pp. 134–139, 2010.
https://doi.org/10.1016/j.jmr.2010.08.018

S. Ha, M. J. Hamamura, O. Nalcioglu, and L. T. Muftuler, A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging, Physics in Medicine & Biology, vol. 55, no. 9, p. 2589, 2010.
https://doi.org/10.1088/0031-9155/55/9/011

M. Meyerspeer, E. S. Roig, R. Gruetter, and A.W. Magill, An improved trap design for decoupling multinuclear RF coils, Magnetic resonance in medicine, vol. 72, no. 2, pp. 584–590, 2014.
https://doi.org/10.1002/mrm.24931

M. Alecci, S. Romanzetti, J. Kaffanke, A. Celik, H.Wegener, and N. Shah, Practical design of a 4 Tesla doubletuned RF surface coil for interleaved 1H and 23Na MRI of rat brain, Journal of Magnetic Resonance, vol. 181, no. 2, pp. 203–211, 2006.
https://doi.org/10.1016/j.jmr.2006.04.011

E. Yacoub, A. Shmuel, J. Pfeuffer, P.-F. Van De Moortele, G. Adriany, P. Andersen, J. T. Vaughan, H. Merkle, K. Ugurbil, and X. Hu, Imaging brain function in humans at 7 Tesla, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 45, no. 4, pp. 588–594, 2001.
https://doi.org/10.1002/mrm.1080

J. T. Vaughan, M. Garwood, C. Collins, W. Liu, L. DelaBarre, G. Adriany, P. Andersen, H. Merkle, R. Goebel, M. Smith et al., 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 46, no. 1, pp. 24–30, 2001.
https://doi.org/10.1002/mrm.1156

C. M. Collins and M. B. Smith, Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of 90_ RF pulse for the head in the birdcage coil, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 45, no. 4, pp. 684–691, 2001.
https://doi.org/10.1002/mrm.1091

X. Zhang, K. Ugurbil, and W. Chen, Microstrip RF surface coil design for extremely high-field MRI and spectroscopy, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 46, no. 3, pp. 443–450, 2001.
https://doi.org/10.1002/mrm.1212

X. Zhang, K. Ugurbil, and Chen, A microstrip transmission line volume coil for human head MR imaging at 4 T, Journal of Magnetic Resonance, vol. 161, no. 2, pp. 242–251, 2003.
https://doi.org/10.1016/s1090-7807(03)00004-1

Y. Pang, Z. Xie, Y. Li, D. Xu, D. Vigneron, and X. Zhang, Resonant mode reduction in radiofrequency volume coils for ultrahigh field magnetic resonance imaging, Materials, vol. 4, no. 8, pp. 1333–1344, 2011.
https://doi.org/10.3390/ma4081333

R. F. Lee, C. R.Westgate, R. G.Weiss, D. C. Newman, and P. A. Bottomley, Planar strip array (PSA) for MRI, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 45, no. 4, pp. 673–683, 2001.
https://doi.org/10.1002/mrm.1090

D. O. Brunner, N. De Zanche, J. Froehlich, D. Baumann, and K. Pruessmann, A symmetrically fed microstrip coil array for 7T, 15th Proc. Intl. Soc. MRM, p. 448, 2007.

S. Orzada, A. Bahr, and T. Bolz, A novel 7 T microstrip element using meanders to enhance decoupling, Meander, vol. 1, no. 36, pp. 10–7, 2008.

G. Saleh, K. Solbach, A. Rennings, and Z. Chen, SAR reduction for dipole RF coil element at 7 Tesla by using dielectric overlay, in 2012 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2012, pp. 1–3.
https://doi.org/10.1109/lapc.2012.6403056

A. Abuelhaija, K. Solbach, and S. Orzada, Comprehensive study on coupled meandered microstrip line RF coil elements for 7-Tesla magnetic resonance imaging, in 2015 9th European Conference on Antennas and Propagation (EuCAP). IEEE, 2015, pp. 1–5.
https://doi.org/10.1109/lapc.2015.7365988

S. Orzada, A. K. Bitz, S. Johst, M. Gratz, M. N. V¨olker, O. Kraff, A. Abuelhaija, T. M. Fiedler, K. Solbach, H. H. Quick et al., Analysis of an integrated 8-Channel Tx/Rx body array for use as a body coil in 7-Tesla MRI, Frontiers in Physics, vol. 5, p. 17, 2017.
https://doi.org/10.3389/fphy.2017.00017

S. Orzada, A. Bitz, M. Gratz, S. Johst, S. Shooshtary, M. Voelker, S. Rietsch, M. Fl¨oser, A. Abuelhaija, M. Oehmigen et al., A 32-channel transmit system add-on for 7 Tesla body imaging, in Proc. Intl. Soc. Mag. Reson. Med, vol. 25, 2017, p. 1219.
https://doi.org/10.1371/journal.pone.0222452

H. Habbachi, H. Boussetta, A. Boukabache, K. A. Kallala, P. Pons, and K. Besbes, Study of a tunable MEMS capacitor: influence of fluids, Electronics Letters, vol. 53, no. 2, pp. pp.72–73, Nov. 2016. [Online].
https://doi.org/10.1049/el.2016.3756
Available: https://hal.laas.fr/hal-01415341

A. Chakrabarti, S. Nath, and C. K. Chanda, Basic Electrical Engineering. Tata McGraw-Hill, 2009.

N. Habbachi, A. Boukabache, H. Boussetta, P. Pons, M. A. Kallala, and K. Besbes, Modeling of microfluidically tuned capacitor for RF applications, in 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2018, pp. 816–820.
https://doi.org/10.1109/ssd.2018.8570458


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize