Open Access Open Access  Restricted Access Subscription or Fee Access

Reconfigurable Compact Antenna for Spatial Modulation MIMO Communications


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v9i3.17051

Abstract


Recently, a new wireless communication scheme called Spatial Modulation MIMO (SM-MIMO) has been introduced for Green wireless communications. Here, an application of a compact reconfigurable antenna working at 2.45 GHz to SM-MIMO is presented. The designed antenna can generate up to eight different radiation patterns. It is composed of two meanderlines radiating elements surrounded by parasitic electronically switchable resonators. The impedance matching has been optimized for six states of the reconfigurable antenna. The spatial diversity, which is a key parameter for SM-MIMO is estimated from the analysis of the complex inter-correlation matrix of the radiation patterns at the operating frequency. Finally, the performance of the designed reconfigurable antenna is assessed by computing the bit error rate (BER) in a Non-Line-of-Sight (NLOS) configuration. The proposed reconfigurable antennas are particularly suitable for indoor SM-MIMO applications that require low power and compact devices.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Reconfigurable Radiation Pattern Antennas; Spatial Diversity; Spatial Modulation; MIMO

Full Text:

PDF


References


Y. Chen, S. Zhang, S. Xu, G. Y. Li, Fundamental tradeoffs on green wireless networks, IEEE Commun. Mag., vol. 49, no 6, p. 30–37, 2011.
https://doi.org/10.1109/mcom.2011.5783982

G. J. Foschini, M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wirel. Pers. Commun., vol. 6, no 3, p. 311–335, 1998.

Y. A. Chau, S. H. Yu, Space modulation on wireless fading channels, in Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, 2001, vol. 3, p. 1668–1671.
https://doi.org/10.1109/vtc.2001.956483

M. D. Renzo, Spatial Modulation for Generalized MIMO : Challenges, Opportunities and Implementation, Proceedings of the IEEE, Vol. 102, Issue 1, Jan. 2014.

P. Patcharamaneepakorn et al., Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation, IEEE Trans. Veh. Technol., vol. 65, n° 12, p. 9715–9731, 2016.
https://doi.org/10.1109/tvt.2016.2526628

A. Afana, E. Erdogan, S. Ikki, Quadrature spatial modulation for cooperative MIMO 5G wireless networks, in 2016 IEEE Globecom Workshops (GC Wkshps), 2016, p. 1–5.
https://doi.org/10.1109/glocomw.2016.7849011

X.-Q. Jiang, M. Wen, H. Hai, J. Li, et S. Kim, Secrecy-enhancing scheme for spatial modulation, IEEE Commun. Lett., vol. 22, no 3, p. 550–553, 2018.
https://doi.org/10.1109/lcomm.2017.2783955

C. Liu, L.-L. Yang, et W. Wang, Secure spatial modulation with a full-duplex receiver, IEEE Wirel. Commun. Lett., vol. 6, no 6, p. 838–841, 2017.
https://doi.org/10.1109/lwc.2017.2748591

X. Wang, X. Wang, L. Sun, Spatial modulation aided physical layer security enhancement for fading wiretap channels, in 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), 2016, p. 1–5.
https://doi.org/10.1109/wcsp.2016.7752590

T. Ali, R. C. Biradar, A compact hexagonal slot dual band frequency reconfigurable antenna for WLAN applications, Microw. Opt. Technol. Lett., vol. 59, n° 4, p. 958–964, 2017.
https://doi.org/10.1002/mop.30443

H. Wang et al., Small-size reconfigurable loop antenna for mobile phone applications, IEEE Access, vol. 4, p. 5179–5186, 2016.
https://doi.org/10.1109/access.2016.2593794

L.-Y. Ji, P.-Y. Qin, Y. J. Guo, C. Ding, G. Fu, S.-X. Gong, A wideband polarization reconfigurable antenna with partially reflective surface, IEEE Trans. Antennas Propag., vol. 64, no 10, p. 4534–4538, 2016.
https://doi.org/10.1109/tap.2016.2593716

Y.-M. Cai, S. Gao, Y. Yin, W. Li, et Q. Luo, Compact-size low-profile wideband circularly polarized omnidirectional patch antenna with reconfigurable polarizations, IEEE Trans. Antennas Propag., vol. 64, no 5, 2016.
https://doi.org/10.1109/tap.2016.2535502

H. Wong, W. Lin, L. Huitema, E. Arnaud, Multi-polarization reconfigurable antenna for wireless biomedical system, IEEE Trans. Biomed. Circuits Syst., vol. 11, n° 3, p. 652–660, 2017.
https://doi.org/10.1109/tbcas.2016.2636872

W. Lin, H. Wong, Polarization reconfigurable aperture-fed patch antenna and array, IEEE Access, vol. 4, p. 1510–1517, 2016.
https://doi.org/10.1109/access.2016.2552488

R.-H. Chen et J.-S. Row, Single-Fed Microstrip Patch Antenna With Switchable Polarization, IEEE Trans. Antennas Propag., vol. 56, p. 922–926, 2008.
https://doi.org/10.1109/tap.2008.919211

N. Nguyen-Trong, A. Piotrowski, L. Hall, C. Fumeaux, A frequency-and polarization-reconfigurable circular cavity antenna, IEEE Antennas Wirel. Propag. Lett., vol. 16, p. 999–1002, 2017.
https://doi.org/10.1109/lawp.2016.2616128

L. Ge, Y. Li, J. Wang, et al., A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility, IEEE Trans. Antennas Propag., vol. 65, no 5, p. 2182–2189, 2017.
https://doi.org/10.1109/tap.2017.2681432

P.-Y. Qin, Y. J. Guo, A. R. Weily, C.-H. Liang, A Pattern Reconfigurable U-Slot Antenna and Its Applications in MIMO Systems, IEEE Trans. Antennas Propag., vol. 60, p. 516–528, 2012.
https://doi.org/10.1109/tap.2011.2173439

S. M. Saeed, C. A. Balanis, C. R. Birtcher, Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices, IEEE Antennas Wirel. Propag. Lett., vol. 15, p. 1979–1982, 2016.
https://doi.org/10.1109/lawp.2016.2547338

Gahgouh, S., Raggad, H., Gharsallah, A., Study and Design of a Hemispherical Reconfigurable Antenna, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (4), pp. 222-225.
https://doi.org/10.15866/irecap.v6i4.9251

J.-S. Row, C.-W. Tsai, Pattern reconfigurable antenna array with circular polarization, IEEE Trans. Antennas Propag., vol. 64, no 4, p. 1525–1530, 2016.
https://doi.org/10.1109/tap.2016.2522467

S.-J. Wu et T.-G. Ma, A Wideband Slotted Bow-Tie Antenna With Reconfigurable CPW-to-Slotline Transition for Pattern Diversity, IEEE Trans. Antennas Propag., vol. 56, p. 327–334, 2008.
https://doi.org/10.1109/tap.2007.915454

S.-H. Chen, J.-S. Row, K.-L. Wong, Reconfigurable Square-Ring Patch Antenna With Pattern Diversity, IEEE Trans. Antennas Propag., vol. 55, p. 472–475, 2007.
https://doi.org/10.1109/tap.2006.889950

N. Nguyen-Trong, L. Hall, et C. Fumeaux, A frequency-and pattern-reconfigurable center-shorted microstrip antenna, IEEE Antennas Wirel. Propag. Lett., vol. 15, p. 1955–1958, 2016.
https://doi.org/10.1109/lawp.2016.2544943

M. Bouslama, M. Traii, T. A. Denidni, A. Gharsallah, Beam-switching antenna with a new reconfigurable frequency selective surface, IEEE Antennas Wirel. Propag. Lett., vol. 15, p. 1159–1162, 2016.
https://doi.org/10.1109/lawp.2015.2497357

S. Yan, G. A. Vandenbosch, Radiation pattern-reconfigurable wearable antenna based on metamaterial structure, IEEE Antennas Wirel. Propag. Lett., vol. 15, p. 1715–1718, 2016.
https://doi.org/10.1109/lawp.2016.2528299

R. Vaughan, Switched parasitic elements for antenna diversity, IEEE Trans. Antennas Propag., vol. 47, no 2, p. 399–405, 1999.
https://doi.org/10.1109/8.761082

H. Kawakami, O. Takashi, Electrically steerable passive array radiator (ESPAR) antennas, IEEE Antennas Propag. Mag., vol. 47, n° 2, p. 43–50, 2005.
https://doi.org/10.1109/map.2005.1487777

K. Gyoda, T. Ohira, Design of Electronically Steerable Passive Array Radiator {(ESPAR)} Antennas, Antennas Propag. Soc. Int. Symp., vol. 2, p. 922–925, 2000.
https://doi.org/10.1109/map.2005.1487777

M. A. Hossain, I. Bahceci, et B. A. Cetiner, Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications, IEEE Trans. Antennas Propag., vol. 65, n° 12, p. 6444–6452, 2017.
https://doi.org/10.1109/tap.2017.2757962

F. Farzami, S. Khaledian, B. Smida, et D. Erricolo, Pattern-Reconfigurable Printed Dipole Antenna Using Loaded Parasitic Elements, IEEE Antennas Wirel. Propag. Lett., vol. 16, p. 1151–1154, 2017.
https://doi.org/10.1109/lawp.2016.2625797

J. Costantine, Y. Tawk, S. E. Barbin, C. G. Christodoulou, Reconfigurable antennas: Design and applications, Proc. IEEE, vol. 103, n° 3, p. 424–437, 2015.
https://doi.org/10.1109/jproc.2015.2396000

G. H. Huff, J. T. Bernhard, Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas, IEEE Trans. Antennas Propag., vol. 54, no 2, p. 464–469, 2006.
https://doi.org/10.1109/tap.2005.863409

C. Jouvaud, J. de Rosny, A. Ourir, Adaptive metamaterial antenna using coupled tunable split-ring resonators, Electron. Lett., vol. 49, n° 8, p. 518–519, 2013.
https://doi.org/10.1049/el.2013.0398

J. Sarrazin, Y. Mahe, S. Avrillon, S. Toutain, Pattern Reconfigurable Cubic Antenna, IEEE Trans. Antennas Propag., vol. 57, p. 310–317, 2009.
https://doi.org/10.1109/tap.2008.2011221

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, et E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Tech., vol. 47, no 11, p. 2059–2074, 1999.
https://doi.org/10.1109/22.798001

G. Lerosey, C. Leray, F. Lemoult, J. de Rosny, et A. Tourin, Compact MIMO antenna arrays using metamaterial hybridization band gaps, in 2012 International Symposium on Antennas and Propagation (ISAP), 2012, p. 774–777.

S. Blanch, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description, Electron. Lett., vol. 39, no 52, p. 705–707, 2003.
https://doi.org/10.1049/el:20030495

E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun., vol. 10, n° 6, p. 585–595, 1999.
https://doi.org/10.1002/ett.4460100604

A. Paulraj, R. Nabar, D. Gore, Introduction to space-time wireless communications. Cambridge university press, 2003.

Y. Yang et B. Jiao, Information-guided channel-hopping for high data rate wireless communication, IEEE Commun. Lett., vol. 12, n° 4, 2008.
https://doi.org/10.1109/lcomm.2008.071986

R. Rajashekar, K. V. S. Hari, L. Hanzo, Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems, IEEE Trans. Commun., vol. 62, no 1, p. 112–125, 2014.
https://doi.org/10.1109/tcomm.2013.120213.120850

M. T. Ivrlac, J. A. Nossek, Quantifying diversity and correlation in Rayleigh fading MIMO communication systems, in Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2003, vol. 21, p. 158–161.
https://doi.org/10.1109/isspit.2003.1341084


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize