Open Access Open Access  Restricted Access Subscription or Fee Access

Complementary Interleaved CDS Arrays to Improve Antenna Aperture Utilization


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v9i2.16317

Abstract


Volume usage is an important issue in space-based satellite communication systems. In this paper, antenna array elements are interleaved into one aperture in order to avoid using two separated antennas. The method utilizes two complementary cyclic difference set (CDS) arrays, where equal array element excitations reduce the complexity of the driving network and improve the efficiency of its direct current-to-radio frequency power conversion. Adding elements to each array member and placing them in symmetry with respect to the origin at distances arranged to form an equivalent amplitude using Hamming and cosine squared taperings decrease the side lobe levels and beam widths. The amplitude-to-space conversion is achieved through an equal area approximation. The results demonstrate the effectiveness of the proposed method in interleaving two arrays sharing one aperture for two beam antennas, each one with a narrowed beam width and decreased side lobes. The proposed method offers antenna design flexibility for a given aperture size despite the limited number of CDSs. The measurements demonstrate that compared to the original CDS performance, the arrays have a narrower beam width of at least 3 degrees and a lower side lobe level of at least 1.66 dB, with a difference of less than 0.9 dB between simulations and reality.
Copyright © 2019 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.

Keywords


Cyclic Difference Set; Equal Area Approximation; Interleaved; Sparse Array; Aperture Sharing

Full Text:

PDF


References


T. N. Kaifas, D. G. Babas, G. Toso, and J. N. Sahalos, Multibeam antennas for global satellite coverage: theory and design, IET Microwaves, Antennas & Propagation, vol. 10, 2016, pp. 1475-1484.
https://doi.org/10.1049/iet-map.2015.0811

T. N. Kaifas, D. G. Babas, G. Toso, and J. N. Sahalos, Tx/Rx multibeam satellite antenna array design assesment on a single aperture, in 2014 8th European Conference on Antennas and Propagation (EuCAP), The Hague, NL, 2014, pp. 1805–1809.
https://doi.org/10.1109/eucap.2014.6902145

J. M. Montero, A. M. Ocampo, and N. J. G. Fonseca, C-band multiple beam antennas for communication satellites, IRE Trans. Antennas Propagation, vol. 63, January 2015, pp. 1263–1275.
https://doi.org/10.1109/tap.2015.2395444

B. Palacin, N. J. G. Fonseca, M. Romier, R. Contreres, J. C. Angevain, G. Toso, et al., Multibeam antennas for very high throughput satellites in Europe: technologies and trends, in 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 2413–2417.
https://doi.org/10.23919/eucap.2017.7928493

P. Angeletti, C. Mangenot, and G. Toso, Recent advances on array antennas for multibeam space applications, in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, 2013, pp. 2233–2234.
https://doi.org/10.1109/aps.2013.6711775

G. Toso, P. Angeletti, and C. Mangenot, Multibeam antennas based on phased arrays: an overview on recent ESA developments, in The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, NL, 2014, pp. 178–181.
https://doi.org/10.1109/eucap.2014.6901721

S. Rao, C. C. Hsu, and J. Wang, Common aperture satellite antenna system for multiple contoured beams and multiple spot beams, in 2010 IEEE Antennas and Propagation Society International Symposium, Berlin, Germany, 2010, pp. 1–4.
https://doi.org/10.1109/aps.2010.5561175

C. I. Coman, I. E. Lager, and L. P. Ligthart, Design considerations in sparse array antennas, in 2006 European Radar Conference, Manchester, UK, 2006, pp. 72–75.
https://doi.org/10.1109/eurad.2006.280276

L. Li and F. Li, The design of sparse antenna array. arXiv preprint. arXiv:0811.0705, 2008.

M. C. Vigano, G. Toso, P. Angeletti, I. E. Lager, A. Yarovoy, and D. Caratelli, Sparse antenna array for Earth-coverage satellite applications, in 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 2010, pp. 1–4.
https://doi.org/10.1109/eucap.2014.6902003

G. Toso, C. Mangenot, and A. G. Roederer, Sparse and thinned arrays for multiple beam satellite applications, in The Second European Conference on Antennas and Propagation, EuCAP 2007, Edinburgh, UK, 2007, p. 566.
https://doi.org/10.1049/ic.2007.1093

O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, and D. Pinchera, Aperiodic arrays for space applications: an effective strategy for the overall design, in 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009, pp. 2031–2035.

P. Angeletti and G. Toso, Aperiodic arrays for space applications: a combined amplitude/density synthesis approach, in 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009, pp. 2026–2030.

W. Doyle, On approximating linear array factors. Fort Belvoir, VA: Ft. Belvoir Defense Technical Information Center, 1963.

E. T. Rahardjo, E. Sandi, and F. Y. Zulkifli, Design of linear sparse array based on the Taylor line source distribution element spacing, in 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, Malaysia, 2017, pp. 61–64.
https://doi.org/10.1109/apmc.2017.8251377

R. L. Haupt, Interleaved thinned linear arrays, IEEE Trans. Antennas Propagation, vol. 53, September 2005, pp. 2858–2864.
https://doi.org/10.1109/tap.2005.854522

L. Qi, Z. Long, S. Gao, P. Cruz, J. Wonhoon, S. Pires, et al., Interleaved dual-band circularly polarized active array antenna for satellite communications, in 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015, pp. 1–5.
https://doi.org/10.1109/eucap.2016.7481864

G. Oliveri, P. Rocca, and A. Massa, Interleaved linear arrays with difference sets, Electron. Letters, vol. 46, March 2010, pp. 323–324.
https://doi.org/10.1049/el.2010.2255

C. I. Coman, I. E. Lager, and L. P. Ligthart, Multifunction antennas - the interleaved sparse sub-arrays approach, in 2006 European Radar Conference, Manchester, UK, 2006, pp. 1794–1797.
https://doi.org/10.1109/eurad.2006.280338

O. M. Bucci, M. D'Urso, T. Isernia, P. Angeletti, and G. Toso, Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques, IEEE Trans. Antennas Propagation, vol. 58, March 2010, pp. 1949–1958.
https://doi.org/10.1109/tap.2010.2046831

O. M. Bucci, Active arrays for satellite communications, in 2012 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2012, pp. 1–4.
https://doi.org/10.1109/lapc.2012.6402932

G. Swenson and Y. Lo, The University of Illinois radio telescope, IRE Trans. Antennas Propagation, vol. 9, March 1961, pp. 9–16.
https://doi.org/10.1109/tap.1961.1144945

D. G. Leeper, Isophoric arrays-massively thinned phased arrays with well-controlled sidelobes, IRE Trans. Antennas Propagation, vol. 47, December 1999, pp. 1825–1835.
https://doi.org/10.1109/8.817659

C. Trampuz, M. Simeoni, I. E. Lager, and L. P. Ligthart, Complementarity based design of antenna systems for FMCW radar, in European Radar Conference, Amsterdam, Netherlands, 2008, pp. 216–219.

C.-X. Mao, S. Gao, Q. Luo, T. Rommel, and Q.-X. Chu, Low-cost X/Ku/Ka-band dual-polarized array with shared aperture, IEEE Transactions on Antennas and Propagation, vol. 65, 2017, pp. 3520-3527.
https://doi.org/10.1109/tap.2017.2700161

C.-X. Mao, S. Gao, Y. Wang, Q.-X. Chu, and X.-X. Yang, Dual-Band Circularly Polarized Shared-Aperture Array for C-/X-Band Satellite Communications, IEEE Transactions on Antennas and Propagation, vol. 65, 2017, pp. 5171-5178.
https://doi.org/10.1109/tap.2017.2740981

Kumar, K., Pavani, M., Design of a Compact Rectangular Patch Antenna Using Defected Ground Structure, (2017) International Journal on Communications Antenna and Propagation (IRECAP), 7 (4), pp. 282-289.
https://doi.org/10.15866/irecap.v7i4.12389

Kumari, R., Kumar, M., Microstrip Patch Multiband Antenna for C-Band, X-Band and Ku-Band Applications, (2013) International Journal on Communications Antenna and Propagation (IRECAP), 3 (3), pp. 176-180.
https://doi.org/10.1109/mspct.2013.6782107

Altamirano, C., de Almeida, C., Inter-User Interference Reduction in Massive MIMO for Linear and Planar Arrays, (2019) International Journal on Communications Antenna and Propagation (IRECAP), 9 (1), pp. 30-35.
https://doi.org/10.15866/irecap.v9i1.12702

K. W. Cattermole, Mathematical foundation for communication engineering. Pentech Press, UK: Pentech Press, 1985.

D. G. Leeper, Isophoric arrays-massively thinned phased arrays with well-controlled sidelobes, IEEE Transactions on Antennas and Propagation, vol. 47, 1999, pp. 1825-1835.
https://doi.org/10.1109/8.817659

C. A. Balanis, Antenna theory analysis and design vol. 3rd Edition. Hoboken, NJ: Wiley, 2005.

MATLAB for deep learning,
Available: https://www.mathworks.com


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize