Open Access Open Access  Restricted Access Subscription or Fee Access

Modelling and Predicting the Behaviour of a Secondary User in Cognitive Radio Using Artificial Intelligence Techniques

Deisy Dayana Zambrano(1), Octavio José Salcedo(2*), Miguel Jose Espitia(3)

(1) Universidad Distrital Francisco José de Caldas, Faculty of Engineering, Colombia
(2) Universidad Distrital Francisco José de Caldas, Faculty of Engineering, Colombia
(3) Universidad Distrital Francisco José de Caldas, Faculty of Engineering, Colombia
(*) Corresponding author


DOI: https://doi.org/10.15866/irecap.v7i4.11824

Abstract


In the search for performance and adequate quality of service for the communication of users in cognitive wireless networks, spectral transfer is of great importance. The possible and poor use of the spectrum, combined with the increased use of the radiofrequency environment in the last years, has degraded the quality of service for various wireless networks and applications, as for example, in the cellular network. This has led to the development of new research on the access to the dynamic spectrum that converges in the use of "cognitive radio", as an essential parameter for the use of licensed spectrum, well above the currently detected consumption values. This paper presents the procedure and main results of a comparative study based on the use of two computational intelligence tools applied in a task of prediction of a series of chaotic time, which represents the intervention of the Secondary User in the wireless network. The methods of forecasting time series are ANFIS algorithm (Fuzzy Inference System Based on Adaptive Networks) and neural networks. Then the results of this study are discussed based on criteria such as the required processing time and the mean squared error and its root.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Index ANFIS; Neural Networks; Secondary Users (SUs); Artificial Intelligence; Cognitive Radio

Full Text:

PDF


References


C. Hernandez, C. Salgado, H. López, and E. Rodriguez-Colina, “Multivariable algorithm for dynamic channel selection in cognitive radio networks,” EURASIP J. Wirel. Commun. Netw., vol. 2015, no. 1, p. 216, 2015.
http://dx.doi.org/10.1186/s13638-015-0445-8

J. Elhachmi and Z. Guennoun, “Cognitive radio spectrum allocation using genetic algorithm,” EURASIP J. Wirel. Commun. Netw., vol. 2016, no. 1, p. 133, 2016.
http://dx.doi.org/10.1186/s13638-016-0620-6

N. Abbas, Y. Nasser, and K. El Ahmad, “Recent advances on artificial intelligence and learning techniques in cognitive radio networks,” EURASIP J. Wirel. Commun. Netw., vol. 2015, no. 1, p. 174, 2015.
http://dx.doi.org/10.1186/s13638-015-0381-7

Wen, Tao Luo, Weidong Xiang, Majhi, S., Yunhong Ma, “Autoregressive Spectrum Hole Prediction Model for Cognitive Radio Systems,” IEEE International Conference on Communications 2008 (ICC 2008), May 2008, Page(s):154-157.
http://dx.doi.org/10.1109/iccw.2008.34

Tumuluru V.K., Ping Wang, Niyato D., “A Neural Network Based Spectrum Prediction Scheme for Cognitive Radio”, IEEE International Conference on Communications 2010 (ICC 2010), May 2010, Page(s):1-5.
http://dx.doi.org/10.1109/icc.2010.5502348

Won-Yeol Lee, & Akyldiz, I. F. (2011). A Spectrum Decision Framework for Cognitive Radio Networks. IEEE Transactions on Mobile Computing, 10, 161–174.
http://dx.doi.org/10.1109/tmc.2010.147

Yao, Y. (2012). A Spectrum Decision Support System for Cognitive Radio Networks (Licentiate dissertation). Karlskrona.
http://dx.doi.org/10.1109/ised.2012.65

C. Zhai, J. Liu, L. Zheng, and X. Wang, “Wireless energy harvesting-based spectrum leasing with secondary user selection,” IET Commun., vol. 11, no. 4, pp. 499–506, 2017.
http://dx.doi.org/10.1049/iet-com.2016.0326

A. L. Nacer, “Esquema De Alamouti ,” p. 279. Disponible en: e-REdING, Biblioteca ETSI. 2017, http://bibing.us.es/proyectos/abreproy/11831/fichero/Volumen+I%252FCapitulo+3+-+Esquema+de+Alamouti.pdf.
http://dx.doi.org/10.15665/rp.v15i1.820.s351

K. J. Galeano, “Modelo de decisión del espectro para radio cognitiva que integra las pérdidas de propagación en la banda GSM del espectro radioeléctrico” Facultad de ingeniería, Maestría en Ciencias de la Información y las Comunicaciones, 2015.
http://dx.doi.org/10.15425/redecom.14.2015.10

L. C. Salgado, “Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process", Facultad de Ingeniería, Maestría en Ciencias de la Información y las Comunicaciones, 2014.
http://dx.doi.org/10.15425/redecom.12.2014.13

L. S. Pillutla and B. Joshi, "Sequential cooperative spectrum sensing in cognitive radio networks: Optimal selection of secondary users and their spectral measurements," 2017 9th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2017, pp. 330-337.
http://dx.doi.org/10.1109/comsnets.2017.7945394

S. Bhattacharjee, S. Debroy and M. Chatterjee, "Quantifying Trust for Robust Fusion While Spectrum Sharing in Distributed DSA Networks," in IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 2, pp. 138-154, June 2017.
http://dx.doi.org/10.1109/tccn.2017.2702173

N. Joshi and B. Jharia, “Optimized fuzzy power control over fading channels in spectrum sharing cognitive radio using ANFIS,” 2015 2nd Int. Conf. Signal Process. Integr. Networks, pp. 329–333, 2015.
http://dx.doi.org/10.1109/spin.2015.7095404

S. M. Hiremath, S. K. Patra, and A. K. Mishra, “Extended date rate prediction for cognitive radio using ANFIS with Subtractive Clustering,” CODEC 2012 - 5th Int. Conf. Comput. Devices Commun., vol. 3, 2012.
http://dx.doi.org/10.1109/codec.2012.6509239

A. Ben Zineb, M. Ayadi, and S. Tabbane, “Cognitive radio networks management using an ANFIS approach with QoS/QoE mapping scheme,” 2015 Int. Symp. Networks, Comput. Commun. ISNCC 2015, 2015.
http://dx.doi.org/10.1109/isncc.2015.7238588

Rupanwita DasMahapatra, “Ooptimal power control for cognitive radio in spectrum distribution using ANFIS”, Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International Conference , Feb, 2015.
http://dx.doi.org/10.1109/spices.2015.7091360

M. P. Nikam, “Throughput Prediction in Cognitive Radio Using Adaptive Neural Fuzzy Inference System,” 2014 Int. Conf. Adv. Commun. Comput. Technol. (ICACACT 2014), pp. 1–5, 2014
http://dx.doi.org/10.1109/eic.2015.7230739

Lopez M. and Casadevall F., "Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio," European Transactions on Telecommunications, vol. 21, no. 8, pp. 680-693, 2010.
http://dx.doi.org/10.1002/ett.1453

ITU-R, "Report ITU-R SM.2256, spectrum occupancy measurements and evaluation," Geneva 2012.
http://dx.doi.org/10.1002/9780470610947.ch11

Orumwense, E., Oyerinde, O., Mneney, S., Impact of Primary User Emulation Attacks on Cognitive Radio Networks, (2014) International Journal on Communications Antenna and Propagation (IRECAP), 4 (1), pp. 19-26.

Orumwense, E., Afullo, T., Srivastava, V., Using Massive MIMO and Small Cells to Deliver a Better Energy-Efficient Cognitive Radio Network, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (5), pp. 274-281.
http://dx.doi.org/10.15866/irecap.v6i5.9781

Anusha, M., Srikanth, V., An Efficient Mac Protocol for Reducing Channel Interference and Access Delay in Cognitive Radio Wireless Mesh Networks, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (1), pp. 14-18.
http://dx.doi.org/10.15866/irecap.v6i1.7891

Pedraza, L., Hernandez, C., Salcedo, O., Spectrum Forecast Using Propagation Losses of the Okumura-Hata Model, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (5), pp. 328-335.
http://dx.doi.org/10.15866/irecap.v6i5.10555


Refbacks

  • There are currently no refbacks.



Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize