Open Access Open Access  Restricted Access Subscription or Fee Access

Spectrum Forecast Using Propagation Losses of the Okumura-Hata Model


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v6i5.10555

Abstract


Radioelectric spectrum occupancy forecast has proven to be useful in the design of wireless systems because of its ability to harness spectrum opportunities like Cognitive Radio (CR). This paper proposes the development of a model that identifies the spectrum opportunities in the channel of a mobile cellular network for an urban environment using the received signal power forecast. The proposed model integrates the Okumura-Hata (O-H) large-scale propagation model with a wavelet neural model. The model results, obtained through simulations, show that the wavelet neural model forecasts with a high degree of precision and that the CR user may forecast the power level that will be received from the primary Base Station (BS) at different distances, which is consistent with the observed behavior in experiments carried out in wireless systems of this type. Finally, the duty cycle is also presented.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Radioelectric Spectrum; Wavelet Neural Model; Okumura-Hata Model; Cognitive Radio; Duty Cycle

Full Text:

PDF


References


S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, Volume 23, (Issue 2), 2005, Pages 201–220.
http://dx.doi.org/10.1109/jsac.2004.839380

L. Pedraza, C. Hernandez, K. Galeano, E. Rodriguez, I. Paez, Ocupación espectral y modelo de radio cognitiva para Bogotá (Universidad Distrital Francisco José de Caldas, 2016).
http://dx.doi.org/10.17230/ingciencia.10.19.6

I. Akyildiz, W. Y. Lee, M. Vuran, S. Mohanty, NeXt generation / dynamic spectrum access / cognitive radio wireless networks: A survey, Computer Networks Journal, Volume 50, 2006, Pages 2127-2159.
http://dx.doi.org/10.1016/j.comnet.2006.05.001

S. Rocke, A. M. Wyglinski, Geo-statistical analysis of wireless spectrum occupancy using extreme value theory, Conference on Communications, Computers and Signal Processing, pp. 753-758, Victoria, 2011.
http://dx.doi.org/10.1109/pacrim.2011.6032988

T. M. Taher, R. B. Bacchus, K. J. Zdunek, D. A. Roberson, Long-term spectral occupancy findings in Chicago, IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 100-107, Aachen, 2011.
http://dx.doi.org/10.1109/dyspan.2011.5936195

F. H. Sanders, Broadband spectrum survey at Los Angeles, California (Boulder, Colo., 1997).
http://dx.doi.org/10.3886/icpsr07816

M. Lopez, F. Casadevall, Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio, European Transactions on Telecommunications, Volume 21, (Issue 8), 2010, Pages 680-693.
http://dx.doi.org/10.1002/ett.1453

M. Wellens, P. Mahonen, Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model, Mob. Netw. Appl., Volume 15, (Issue 3), 2010, Pages 461-474.
http://dx.doi.org/10.1007/s11036-009-0199-9

K. Patil, K. Skouby, A. Chandra, R. Prasad, Spectrum occupancy statistics in the context of cognitive radio, International Symposium on Wireless Personal Multimedia Communications, pp. 1-5, Brest, 2011.
http://dx.doi.org/10.1109/icdecom.2011.5738472

D. Chen, S. Yin, Q. Zhang, M. Liu, S. Li, Mining spectrum usage data: a large-scale spectrum measurement study, International Conference on Mobile Computing and Networking, pp. 13-24, Beijing, 2009.
http://dx.doi.org/10.1145/1614320.1614323

R. I. C. Chiang, G. B. Rowe, K. W. Sowerby, A Quantitative Analysis of Spectral Occupancy Measurements for Cognitive Radio, Vehicular Technology Conference, pp. 3016-3020, Dublin, 2007.
http://dx.doi.org/10.1109/vetecs.2007.618

M. Mehdawi, N. G. Riley, M. Ammar, A. Fanan, M. Zolfaghari, Spectrum occupancy measurements and lessons learned in the context of cognitive radio, Telecommunications Forum Telfor, pp. 196-199, Belgrade, 2015.
http://dx.doi.org/10.1109/telfor.2015.7377446

A. Al-Hourani, V. Trajkovi, S. Chandrasekharan, S. Kandeepan, Spectrum occupancy measurements for different urban environments, European Conference on Networks and Communications, pp. 97-102, Paris, 2015.
http://dx.doi.org/10.1109/eucnc.2015.7194048

L. Pedraza, F. Forero, I. Paez, Metropolitan Spectrum Survey in Bogota Colombia, IEEE International Conference on Advanced Information Networking and Applications Workshops, pp. 548-553, Barcelona, 2013.
http://dx.doi.org/10.1109/waina.2013.177

M. Lopez, F. Casadevall, Statistical Prediction of Spectrum Occupancy Perception in Dynamic Spectrum Access Networks, IEEE International Conference on Communications, pp. 1-6, Kyoto, 2011.
http://dx.doi.org/10.1109/icc.2011.5963505

Y. Okumura, E. Ohmori, T. Kawano, K. Fukuda, Field strength and its variability in UHF and VHF land-mobile radio service, Review of the Electrical Communication Laboratory, Volume 16, (Issue 9), 1968, Pages 825-873.
http://dx.doi.org/10.1016/b978-0-7506-1738-3.50019-0

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, D. Lavry, A statistical model of urban multipath propagation, IEEE Transactions on Vehicular Technology, Volume 21, (Issue 1), 1972, Pages 1-9.
http://dx.doi.org/10.1109/t-vt.1972.23492

M. Hata, Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technology, Volume 29, (Issue 3), 1980,Pages 317-325.
http://dx.doi.org/10.1109/t-vt.1980.23859

J. Walfisch, H. L. Bertoni, A theoretical model of UHF propagation in urban environments, IEEE Transactions on Antennas and Propagation, Volume 36, (Issue 12), 1988, Pages 1788-1796.
http://dx.doi.org/10.1109/8.14401

D. Har, A. M. Watson, A. G. Chadney, Comment on diffraction loss of rooftop-to-street in COST 231-Walfisch-Ikegami model, IEEE Transactions on Vehicular Technology, Volume 48, (Issue 5), 1999, Pages 1451-1452.
http://dx.doi.org/10.1109/25.790519

T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Magazine, Volume 45, (Issue 3), 2003, Pages 51-82.
http://dx.doi.org/10.1109/map.2003.1232163

K. E. Stocker, B. E. Gschwendtner, F. M. Landstorfer, Neural network approach to prediction of terrestrial wave propagation for mobile radio, IEE Proceedings H - Microwaves, Antennas and Propagation, Volume 140, (Issue 4), 1993, Pages 315-320
http://dx.doi.org/10.1049/ip-h-2.1993.0048

S. P. Sotiroudis, S. K. Goudos, K. A. Gotsis, K. Siakavara, J. N. Sahalos, Application of a composite differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile communication systems, IEEE Antennas and Wireless Propagation Letters, Volume 12, 2013, Pages 364-367.
http://dx.doi.org/10.1109/lawp.2013.2251994

E. Ostlin, H. J. Zepernick, H. Suzuki, Macrocell Path-Loss Prediction Using Artificial Neural Networks, IEEE Transactions on Vehicular Technology, Volume 59, (Issue 6), 2010, Pages 2735-2747.
http://dx.doi.org/10.1109/tvt.2010.2050502

S. Phaiboon, P. Phokharatkul, S. Somkuarnpanit, 2 to 16 GHz Microwave Line-of-Sight Path Loss Prediction on Urban streets by Fuzzy Logic Models, Conference TENCON, pp. 1-4, Melbourne, 2005.
http://dx.doi.org/10.1109/tencon.2005.301255

Y. Shu, M. Yu, J. Liu, O. Yang, Wireless traffic modeling and prediction using seasonal ARIMA models, IEEE Int. Conf. on Commun, pp. 1675-1679, Anchorage, 2003.
http://dx.doi.org/10.1109/icc.2003.1203886

W. Wang,Z. Niu, Time series analysis of NASDAQ composite based on seasonal ARIMA model, Conf. on Manage. and Service Sci., pp. 1-4, Wuhan, 2009.
http://dx.doi.org/10.1109/icmss.2009.5300866

V. Tran, V. Debusschere, S. Bacha, Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model,IEEE Int. Conf. on Ind. Technology, pp. 1127-1131, Athens, 2012.
http://dx.doi.org/10.1109/icit.2012.6210091

Z. Wang, S. Salous, Time series arima model of spectrum occupancy for cognitive radio, Seminar on Cognitive Radio and Software Defined Radios: Technologies and Techniques, pp. 1-4, London, 2008.
http://dx.doi.org/10.1049/ic:20080405

A. Gorcin, H. Celebi, K. Qaraqe, H. Arslan, An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements, Int. Symp. on Personal Indoor and Mobile Radio Commun., pp. 705-709, Toronto, 2011.
http://dx.doi.org/10.1109/pimrc.2011.6140056

S. Yarkan,H. Arslan, Binary time series approach to spectrum prediction for cognitive radio,Vehicular Technology Conf., pp. 1563-1567, Dublin, 2007.
http://dx.doi.org/10.1109/vetecf.2007.332

L. Yang, Y. Dong, H. Zhang, H. Zhao, H. Shi, X. Zhao, Spectrum usage prediction based on high-order markov model for cognitive radio networks, Int. Conf. on Comput. and Inform. Technology, pp. 2784-2788, Bradford, 2010.
http://dx.doi.org/10.1109/cit.2010.464

T. Black, B. Kerans, A. Kerans, Implementation of hidden markov model spectrum prediction algorithm, Int. Symp. on Commun. and Inform. Technologies, pp. 280-283, Gold Coast, 2012.
http://dx.doi.org/10.1109/iscit.2012.6380906

W. Bednarczyk, P. Gajewski, Hidden Markov Models Based Channel Status Prediction for Cognitive Radio Networks, PIERS Proceedings, pp. 2770-2773, Prague, 2015.
http://dx.doi.org/10.1109/piers.2016.7734581

V. Tumuluru, P. Wang, D. Niyato, Channel status prediction for cognitive radio networks, Wireless Communications and Mobile Computing, Volume 12, (Issue 10), 2012, Pages 862-874.
http://dx.doi.org/10.1002/wcm.1017

M. Lopez, F. Casadevall, Empirical Time-Dimension Model of Spectrum Use Based on a Discrete-Time Markov Chain With Deterministic and Stochastic Duty Cycle Models, IEEE Transactions on Vehicular Technology, Volume 60, (Issue 6), 2011, Pages 2519-2533.
http://dx.doi.org/10.1109/tvt.2011.2157372

C. Yu, Y. He, T. Quan, Frequency Spectrum Prediction Method Based on EMD and SVR, Intelligent Systems Design and Applications, pp. 39-44, Kaohsiung, 2008.
http://dx.doi.org/10.1109/isda.2008.287

S. Bai, X. Zhou, F. Xu, "Soft decision" spectrum prediction based on back-propagation neural networks, International Conference on Computing, Management and Telecommunications, pp. 128-133, Da Nang, 2014.
http://dx.doi.org/10.1109/commantel.2014.6825592

S. Bai, X. Zhou, F. Xu, Spectrum prediction based on improved-back-propagation neural networks, International Conference on Natural Computation, pp. 1006-1011, Zhangjiajie, 2015.
http://dx.doi.org/10.1109/icnc.2015.7378129

L. Kunwei, Z. Hangsheng, Z. Jianzhao, L. Cao, L. Menglin, A spectrum prediction approach based on neural networks optimized by genetic algorithm in cognitive radio networks, International Conference on Wireless Communications, Networking and Mobile Computing, pp. 131-136, Beijing, 2014.
http://dx.doi.org/10.1049/ic.2014.0089

S. Iliya, E. Goodyer, M. Gongora, J. Shell, J. Gow, Optimized artificial neural network using differential evolution for prediction of RF power in VHF/UHF TV and GSM 900 bands for cognitive radio networks, Workshop on Computational Intelligence, pp. 1-6, Bradford, 2014.
http://dx.doi.org/10.1109/ukci.2014.6930183

Y. Chen, H. S. Oh, Spectrum measurement modelling and prediction based on wavelets, IET Communications, Volume 10, (Issue 16), 2016, Pages 2192-2198.
http://dx.doi.org/10.1049/iet-com.2016.0035

L. Pedraza, C. Hernandez, I. Paez, Evaluation of nonlinear forecasts for radioelectric spectrum, International Journal of Engineering and Technology, Volume 8, (Issue 3), 2016, Pages 1611-1626.
http://dx.doi.org/10.3390/a9040082

Q. Zhang, A. Benveniste, Wavelet networks, IEEE Transactions on Neural Networks, Volume 3, (Issue 6), 1992, Pages 889–898.
http://dx.doi.org/10.1109/72.165591

L. Pedraza, F. Forero, I. Paez, Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia, Ingeniería y Ciencia, Volume 10, (Issue 19), 2014, Pages 127-143.
http://dx.doi.org/10.17230/ingciencia.10.19.6

L. Debnath, F. Shah, Wavelet Transforms and Their Applications (Birkhäuser, 2014).
http://dx.doi.org/10.1007/978-0-8176-8418-1_3

A. F. Molisch, Wireless Communications (Wiley, 2011).
http://dx.doi.org/10.1109/mwc.2012.6155869

T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice-Hall, 2002).
http://dx.doi.org/10.1038/122048a0

K. Madsen, H. B. Nielsen, O. Tingleff, Methods for Non-linear Least Squares Problems (Informatics and Mathematical Modelling, Technical University of Denmark, 2004).
http://dx.doi.org/10.1016/j.apm.2007.09.010

M. Lopez, F. Casadevall, Space-dimension models of spectrum usage for cognitive radio networks, IEEE Transactions on Vehicular Technology, Accepted, 2016.
http://dx.doi.org/10.1109/tvt.2016.2535903

W. F. Egan, Practical RF System Design (Wiley, 2003).
http://dx.doi.org/10.1002/0471654094


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize