Open Access Open Access  Restricted Access Subscription or Fee Access

Ground Penetrating Radar Imaging for Buried Cavities in a Dispersive Medium: Profile Reconstruction Using a Modified Hough Transform Approach and a Time-Frequency Analysis


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v5i2.4978

Abstract


Ground Penetration Radar is a non-destructive tool to explore the underground soil. The modeling is a very important process in order to interpret the GPR profiles. Solving the equations of Maxwell at this level, for a dispersive medium, is modeled by the finite difference method (FDTD) with UPML (uniaxial perfectly matched layers) boundary conditions, because it's an easier and an efficient numerical technique. In this paper, we propose an easier approach to estimate physical parameters of buried targets, of ground penetration radar images (B-scans Profiles), such as voids and small cavities. Traditionally, we use the hough transform to detect the hyperbolas caused by targets reflections, but this one is such difficult in implementation, because in this case we deal with a three-dimensional parametric space. The performance of target recognition depends on the preprocessing phase. A filtering schema based on singular value decomposition (SVD) is proposed to eliminate the direct wave or the clutter, as a first step. Second, we use wavelet decomposition for denoising the B-scan image, a special reconstruction schema is proposed, a B-scan fully reconstructed and one reconstructed ignoring the horizontal component, and a cross-correlation calculation between the two is introduced, in order to enhance the targets signal (hyperbolas). Hyperbola’s apexes are detected using a corner detection approach. Besides, the nature of the dielectric in the cavity, is estimated using a time-frequency analysis, due to the fact that the reflections are not visible neither in the A-scan traces or their spectrum.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Modeling; Finite Difference Time Domain (FDTD); Dispersive Medium; Ground Penetration Radar (GPR); Singular Value Decomposition (SVD); Wavelet Decomposition; Cross-Correlation; Corner Detection; Time-Frequency Analysis

Full Text:

PDF


References


F. REJIBA, "Modélisation de la propagation des ondes électromagnétiques en milieux hétérogènes -Application au Radar Sol", Thèse en Géophysique Appliqué. Université Pierre et Marie Curie - PARIS VI, Mars 2002, 124.

N. BOUBAKI, "Détection de cavités par deux méthodes géophysiques : radar de sol et mesures de résistivités électriques", Thèse en Géophysique Université Paris Sud, Juillet 2013, 153.

S. Gedney and A. Taflove, "Perfectly Matched Layer Absorbing Boundary Conditions," in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition, Allen Taflove, Ed., Artech House, Boston, 2005.

J.P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", Journal of Computational Physics, Volume 114, Issue 2, October 1994, Pages 185-200.
http://dx.doi.org/10.1006/jcph.1994.1159

F. REJIBA, "Modélisation 3D de la propagation des ondes radar en milieu hétérogène, atténuant et dispersif par la méthode des différences finies dans le domaine temporel", Bulletin des Laboratoires des Ponts et de Chaussées - 237 - Mars-Avril 2002 - Réf. 4401 - pp. 81-98.

Rose M. Joseph, Susan C. Hagness, and Allen Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses", Opt. Lett. 16, 1412-1414 (1991).
http://dx.doi.org/10.1364/ol.16.001412

W.H. Wccdon and C.M Rappaport, "A General method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media", IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 401 -409. 1997.
http://dx.doi.org/10.1109/8.558655

D. Uduwawala, "Gaussian vs differentiated gaussian as the input pulse for ground penetrating radar applications", Industrial and Information Systems, 2007. ICIIS 2007. International Conference on , vol., no., pp.199,202, 9-11 Aug. 2007
http://dx.doi.org/10.1109/iciinfs.2007.4579173

A. Elsherbeni nd V. Demir, "The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations", SciTech Publishing, 2009.

Annan AP. 2001. Ground penetrating radar workshop notes. Sensors and Software Inc: Mississauga.

Capineri, L., Grande, P. and Temple, J. A. G. (1998), Advanced image-processing technique for real-time interpretation of ground-penetrating radar images. Int. J. Imaging Syst. Technol., 9: 51–59.
http://dx.doi.org/10.1002/(sici)1098-1098(1998)9:1%3C51::aid-ima7%3E3.0.co;2-q

C. Tu, B. J. van Wyk, K. Djouani, Y. Hamam, S. Du, "A Super Resolution Algorithm to Improve the Hough Transform", ICIAR'11 Proceedings of the 8th international conference on Image analysis and recognition, Volume Part I, pp. 80-89.
http://dx.doi.org/10.1007/978-3-642-21593-3_9

D. Potin, "Traitement des signaux pour la détection des mines antipersonnel", Thèse de Doctorat, Ecole Centrale de Lille and Uni.Sci.Technol. de Lille, France, 2007.

J. Zheng, Su.P. Peng, and F. Yang, "A novel edge detection for buried target extraction after SVD-2D wavelet processing", Journal of Applied Geophysics, Volume 106, July 2014, pp. 106-113.
http://dx.doi.org/10.1016/j.jappgeo.2014.04.016

J. Baili, S. Lahouar, M. Hergli, I. L. Al-Qadi, K. Besbes, "GPR signal denoising by discrete wavelet transform", NDT E Int. 42, 696–703, Jun 2009.
http://dx.doi.org/10.1016/j.ndteint.2009.06.003

Luc M. van Kempen ; Hichem Sahli ; J. Brooks and Jan P. Cornelis
http://dx.doi.org/10.1117/12.383532

"New results on clutter reduction and parameter estimation for land mine detection using GPR", Proc. SPIE 4084, Eighth International Conference on Ground Penetrating Radar, 872 (April 27, 2000).
http://dx.doi.org/10.1117/12.383532

A. Ardeshir Goshtasby, "2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications", chapter 3, p. 43-71, March 2005 (Wiley).

J. Belkadid, S.D. Bennani, M. Rifi, "Modélisation et analyse temps-fréquence des signaux réfléchis obtenus pour une ligne de transmission guidée dans un milieu stratifié", Annales de Télécommunications, 2005.

S. SBAA, "Etude des techniques de détection des variations spectrales par la réallocation de la représentation énergétique temps-fréquence ", Thèse de Doctorat en Traitement de Signal, Université Badji Mokhtar-Annaba, 2006.

F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine, "Time-Frequency Toolbox For Use with MATLAB", CNR(France), Rice University (USA), 1995-1996.

J.M. Binard, "Application Des Transformées En Ondelettes Aux Réponses Impulsionnelles De Salles De Spectacles", Rapport de Stage Master de Recherche, 2008.

J. Martinez, P. Gajan, A. Strzelecki, "Analyse temps-fréquence. Ondelettes", Technique de l’Ingénieur, AF 4 510 − 12.

P.Y. Arquès, N. Thirion-Moreau, E. Moreau, "Les représentations temps-fréquence en traitement du signal", Technique de l’Ingénieur, R 308 - 22.

E. Duflos, P. Hervy, F. Nivelle, S. Perrin, P. Vanheeghe, "Time-frequency analysis of ground penetrating radar signals for mines detection applications", IEEE SMC 99 Conference Proceedings.
http://dx.doi.org/10.1109/icsmc.1999.814146


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize