Viscoelastic Properties of Polysaccharides Derived from the Fungal Modification of Native Starch

Arturo Rodriguez(1*), Mohini M. Sain(2), Robert Jeng(3), Alexis Baltazar y Jimenez(4)

(1) Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, M5S 3B3, Canada, Canada
(2) Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, M5S 3B3, Canada, Canada
(3) Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, M5S 3B3, Canada, Canada
(4) Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, M5S 3B3, Canada, Canada
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The viscoelastic properties of fungal treated starches were studied by Dynamic Mechanical Thermal Analysis in the tensile mode. Native starch was used as control. Modified starches were produced by fermentation with isolates of the fungus Ophiostoma. Overall, the storage modulus was higher in modified starches. The glass transition temperature determined by tan  peak of native starches occurred at ~80°C, but treated starches displayed three different thermal transitions at ~70, 80, and a broad shoulder at 120°C. Results obtained from solid state NMR, FTIR, and chromatography suggest that the functional properties of modified starches can be attributed either to the presence of extracellular exo-polysaccharides or intermolecular bonds occurring at the C6 in the glucopyranose ring
Copyright © 2010 Praise Worthy Prize - All rights reserved.

Keywords


Fungal Exopolysaccharides; Ophiostoma Spp.; Starch-like Polymers; Viscoelastic Chemical Properties of Starch

Full Text:

PDF


References


V. Siracusa, P. Rocculi, S. Romani, M. C. Rosa, Biodegradable polymers for food packaging: a review, Trends Food Sci. Technol., 19 (2008) 634-643.

R. Stepto, The processing of starch as a thermoplastic, Macromol. Symp. 201 (2003) 203-212.

L. Averous, P. Halley, Biocomposites based on plasticized starch, Biofuels, Bioprod. Bioref., 3 (2009) 329-343.

F. Matias, D. Bonatto, G. Padilla, M. Rodrigues, J. Henriques, Polyhydroxyalkanoates production by actinobacteria isolated form soil, Can. J. Microbiol., 55 (2009) 790-800.

A. Kumar, K. Mody, B. Jha, Bacterial exopolysaccharides- a perception, J. Basic Microbiol.,, 47 (2007) 103-117.

M. Luengo, B. Garcia, A. Sandoval, G. Nahrro, E. Olivera, Bioplastics from microorganisms, Current Opinion Microbiol., 6 (2003) 251-260.

A. Rodriguez, M. Sain, R. Jeng, Thermal characterization of starch-based polymers produced by Ophiostoma spp, Thermal Anal. Calorimetry, first published on line (2009).

M. Sain, R. Jeng, M. Hubbes, US Patent Appl., No. 11/764683; 2007.

R. Jeng, C. Huang, M. Sain, M., Hubbes, A. Rodriguez, A. Saville, Starch-like exopolysaccharides produced by the filamentous fungi, Ophiostoma ulmi and O. novo-ulmi. Forest Pathology, 37 (2007) 80-95.

B. Huang, R. Jeng, M. Sain, B. Saville, M. Hubbes, Production, characterization, and mechanical properties of starch modified by Ophiostoma sp., Bioresources, 1(2006) 257-269.

K. Przybyl, H. Dahm, A. Ciesielska, K. Molinski (2006) Cellulolytic activity and virulence of Ophistoma ulmi and O. novo-ulmi isolates, Forest Pathology. 36 (2006) 58-67.

T. Binz, G. Canevascini, Physiological and Molecular Plant Pathology, Xylanases from the Dutch elm disease pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi, Physiological and Molecular Plant Pathology, 49 (1996) 159-175.

Y. Zhou, L. Wang, D. Li, P. Yan, Y. Li, J. Shi, X. Chen, Z. Mao, Effect of sucrose on dynamic mechanical characterization of maize and potato starch films, Carbohydr. Polymers, 76 (2009) 239-243.

F. Xie, L. Yu, L. Chen, L. Li, A new study of starch gelatinization under shear stress using dynamic mechanical analysis, Carbohydr. Polymers,72 (2008) 229-234.

H. Chung, B. Yoo, S. Lim, Effects of physical aging on thermal and mechanical properties of glassy normal corn starch, Starch/Starke, 57 (2005) 354-362.

A. de Graaf, P. Karman, L. Janseen, Material Properties and Glass Transition Temperatures of Different Thermoplastic Starches After Extrusion Processing, Starch/Stärke, 55 (2003) 80-86.

P. Myllarinen, R. Partanen, J. Seppala, P. Forssell, Effect of glycerol on behavior of amylose and amylopectin films, Carbohydr. Polymers, 50 (2002) 355-361.

T. Cataldi, C. Campa, G. De Benedetto, Carbohydrate análisis by high performance anion-exchange chromatography wiht pulsed amperométrico detection: The potencial is still growing, J. Anal. Chem., 368 (2000) 739-758.

K. Koch, R. Andersson, P. Aman, Quantitative analysis of amylopectin unit chains by means of high performance-anion exchange chromatography with pulsed amperometric detection, J. Chrom. A, 800 (1998) 199-206.

P. Baldwin, Starch Granule-Associated Proteins and Polypeptides: A Review, Starch – Stärke, 53 (2001) 475-503.

N. Atichokudomchai, S. Varavinit, P. Chinachoti, A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR Carbohydr. Polymers, 58 (2004) 383–389.

Błaszczak W., Valverdeb S., J. Fornala, Effect of high pressure on the structure of potato starch. Carbohydr. Polymers 59 (2005) 377–383.

Błaszczak W., Fornal J., Valverde S., Garrido L., Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydr. Polymers, 61 (2005) 132–140.

Paris M., Bizot H., Emery J., Buzaré J., Buleón A., NMR local range investigations in amorphous starchy substrates I. Structural heterogeneity probed by 13C CP-MAS NMR. International J. Biol. Macromol., 29 (2001) 127-136.

Tang H., Hills B., Use of 13C MAS NMR to Study Domain Structure and Dynamics of Polysaccharides in the Native Starch Granules. Biomacromolecules, 4 (2003) 1269-1276.

Zhang X., Golding J., I. Burgar, Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy., Polymer, 43 (2002) 5791–5796.

Thygesen L., Løkkey M., Micklander E., Engelsen S., Trends in Food Sci. Technol. 14 (2003) 50.

Fechner P., Wartewig S., Kiesow A., Heilmann A., Kleinebudde P., Neubert R., Starch/Stärke 57 (2005) 605.

Fechner P., Siegfried W., Kleinebudde P., Neubert R., Carbohydr. Res. 340 (2005) 2563.


Refbacks

  • There are currently no refbacks.



Please send any questions about this web site to info@praiseworthyprize.com
Copyright © 2005-2017 Praise Worthy Prize