Open Access Open Access  Restricted Access Subscription or Fee Access

Development of an Artificial Immune System for Power Plant Abnormal Condition Detection, Identification, and Evaluation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v10i3.11739

Abstract


In this paper, the artificial immune system paradigm is used to develop a computational scheme for the detection, identification, and evaluation of abnormal operation of advanced power plants. The self/non-self generation relies on a novel approach consisting of partitioning the Universe and representing clusters as integer strings that can be produced and used with reduced computational effort. The design of the proposed scheme utilizes a positive-selection-type approach combined with a dendritic cell mechanism. The methodology is demonstrated using a high performance model of the acid gas removal unit implemented in Dynsim® that is part of the power plant simulation environment available at West Virginia University AVESTAR Center. Fourteen different abnormal conditions have been considered including solid deposits and leakages occurring at typical locations throughout the system. The proposed monitoring scheme provides excellent performance in terms of false alarm and detection, identification, and evaluation rates.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Artificial Immune System; Power Plant Monitoring and Control; Artificial Intelligence Techniques; Abnormal Condition Detection; Identification; and Evaluation

Full Text:

PDF


References


B. Rukes, R. Taud, Status and perspectives of fossil power generation plants. Energy, Vol. 29, (Iss. 12-15), pp. 1853-1874, 2004.
http://dx.doi.org/10.1016/j.energy.2004.03.053

W. L. Luyben, B. D. Tyreus, M. L. Luyben, Plantwide Process Control. McGraw-Hill, New York, 1998.
http://dx.doi.org/10.1002/aic.690431205

G. P. Rangaiah, V. Kariwala, Plantwide Control: Recent Developments and Applications, John Wiley and Sons Ltd, 2012.
http://dx.doi.org/10.1002/9781119968962.ch1

V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, A review of process fault detection and diagnosis Part I, II, and III, Computers and Chemical Engineering, Vol. 27, pp. 293-311, 2003.
http://dx.doi.org/10.1016/s0098-1354(02)00160-6

M. Bouzenita, T. Bentrcia, L. H. Mouss, M. D. Mouss, A Neural Modeling Approach for the Diagnosis of Elementary Failure Modes in Industrial Plants Rev. des Sciences et de la Techn., Vol.4, (No 1), 2013.
http://dx.doi.org/10.1109/etfa.2011.6059075

R. M. Behbahani, H. Jazayeri-Rad, S. Hajmirzaee, Fault detection and diagnosis in a sour gas absorption column using neural networks, Chemical engineering & technology, 32 (5), 840-845, 2009.
http://dx.doi.org/10.1002/ceat.200800486

M. Namdari, H. J.-Rad, S.-J. Hashemi, Process Fault Diagnosis Using Support Vector Machines with a Genetic Algorithm based Parameter Tuning. J. of Automation and Control, Vol. 2, (No. 1), pp. 1-7, 2014.
http://dx.doi.org/10.12691/automation-2-1-1

I. Yélamos, G. Escudero, M. Graells, L. Puigjaner, Performance assessment of a novel fault diagnosis system based on support vector machines, Computers & Chemical Eng., 33 (1), 244-255, 2009.
http://dx.doi.org/10.1016/j.compchemeng.2008.08.008

Q. Jiang, X. Yan, W. Zhao, Fault Detection and Diagnosis in Chemical Processes Using Sensitive Principal Component Analysis, Ind. Eng. Chem. Res., (4), pp 1635–1644, 2013.
http://dx.doi.org/10.1021/ie3017016

L. A. Rusinov, N. V. Vorobiev, V. V. Kurkina, Fault diagnosis in chemical processes and equipment with feedbacks, Chemometrics and Intelligent Laboratory Systems, Vol. 126, pp. 123-128, 2013.
http://dx.doi.org/10.1016/j.chemolab.2013.03.015

X. Chen, X Yan, Using Improved self-Organizing Map for Fault Diagnosis in Chemical Industry Process, Chem. Eng. Research and Design, Vol. 90, (Iss. 12), pp 2262-2277, 2012
http://dx.doi.org/10.1016/j.cherd.2012.06.004

E. L. Russell, L. H. Chiang, R. D. Braatz, Data-driven techniques for fault detection and diagnosis in chemical processes, Springer-Verlagm, London, 2000.
http://dx.doi.org/10.1007/978-1-4471-0409-4

P. Paul, D. Bhattacharyya, R. Turton, S. E. Zitney, Sensor Network Design for Maximizing Process Efficiency: An Algorithm and Its Application, American Institute of Chemical Engineers Journal, Vol. 61, (Iss. 2), pp. 464-476, 2015.
http://dx.doi.org/10.1002/aic.14649

M. Bhushan, S. Narasimhan, R. Rengaswamy, Robust sensor network design for fault diagnosis. Comput Chem Eng. 32:1067–1084, 2008.
http://dx.doi.org/10.1016/j.compchemeng.2007.06.020

D. Dasgupta (Ed.), Artificial Immune Systems and Their Applications, Springer Verlag, 1999.
http://dx.doi.org/10.1007/978-3-642-59901-9

E. Hart, J. Timmis. Application areas of AIS: The past, the present and the future. Applied Soft Computing 8(1), pp. 191-201. 2008.
http://dx.doi.org/10.1016/j.asoc.2006.12.004

D. Dasgupta, L. F. Nino, Immunological Computation – Theory and Applications, CRC Press, Auerbach Publications, Taylor & Francis Group, 2009.
http://dx.doi.org/10.1201/9781420065466

M. G. Perhinschi, H. Moncayo, J. Davis, Integrated Framework for Artificial Immunity-Based Aircraft Failure Detection, Identification, and Evaluation, AIAA J. of Aircraft, Vol. 47, (No. 6), pp. 1847-1859, 2010.
http://dx.doi.org/10.2514/1.45718

M. G. Perhinschi, H. Moncayo, D. Al Azzawi, Integrated Immunity-Based Framework for Aircraft Abnormal Conditions Management, AIAA J. of Aircraft, Vol. 51, (Iss. 6), pp 1726-1739, 2014.
http://dx.doi.org/10.2514/1.c032381

M. G. Perhinschi, G. Al-Sinbol, D. Bhattacharyya, F. Lima, G. Mirlekar, R. Turton, Development of an Immunity-based Framework for Power Plant Monitoring and Control, Advanced Chemical Engineering Research, Vol. 4, (Iss. 1), pp. 15-28, 2015.
http://dx.doi.org/10.12783/acer.2015.0401.02

D. Bhattacharyya, R. Turton, S. E. Zitney. Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture. Ind. Eng. Chem. Res. 50 (3), pp. 1674-1690. 2010.
http://dx.doi.org/10.1021/ie101502d

F. V. Lima, D. Bhattacharyya, R. Turton, P. Mahapatra, S. E. Zitney, Control of integrated gasification combined cycle power plants with CO2 capture, The Impact of Control Technology, 2nd edition, T. Samad and A.M. Annaswamy (eds.), IEEE Control Systems Society, 2014.
http://dx.doi.org/10.2172/1026486

C. A. Janeway, T. Paul, W. Mark, S. Mark, Immunobiology: The Immune System in Health and Disease. New York: Garland Science, 2005.
http://dx.doi.org/10.2307/1312747

C. S. William, C. A. Nelson, R. D. Newberry, D. M. Kranz, J. H. Russell, D. Y. Loh. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature, 336 (6194), pp. 73-76. 1988.
http://dx.doi.org/10.1038/336073a0

H. Moncayo, M. G. Perhinschi, J. Davis, Aircraft Failure Detection and Identification Using an Immunological Hierarchical Multi-Self Strategy, AIAA Journal of Guidance, Control, and Dynamics, Vol. 33, (No. 4), pp. 302-320, Jul.-Aug. 2010.
http://dx.doi.org/10.2514/6.2009-5878

Al-Sinbol, G., Perhinschi, M., Generation of Power Plant Artificial Immune System Using the Partition of the Universe Approach, (2016) International Review of Automatic Control (IREACO), 9 (1), pp. 40-47.
http://dx.doi.org/10.15866/ireaco.v9i1.8170

H. Moncayo, I. Moguel, M. G. Perhinschi, D. Al Azzawi, A. Togayev, A. Perez, Structured Non-Self Approach for Aircraft Failure Identification within an Immunity-Based Fault Tolerance Architecture, The Aeronautical Journal, Vol. 120, (Iss. 1225), pp 415-434, March 2016.
http://dx.doi.org/10.1017/aer.2016.15

D. Al Azzawi, M. G. Perhinschi, H. Moncayo. Artificial dendritic cell mechanism for aircraft immunity-based failure detection and identification. Journal of Aerospace Information Systems, 11 (7), pp. 467-481. 2014.
http://dx.doi.org/10.2514/1.i010214

Perhinschi, M., Al-Sinbol, G., Artificial Dendritic Cell Algorithm for Advanced Power System Monitoring, (2016) International Review of Automatic Control (IREACO), 9 (5), pp. 330-340.
http://dx.doi.org/10.15866/ireaco.v9i5.10067

D. Al Azzawi, M. G. Perhinschi, H. Moncayo, A. Perez, A Dendritic Cell Mechanism for Detection, Identification, and Evaluation of Aircraft Failures, J. of Control Eng. Practice, Vol. 41, pp: 134-148, 2015.
http://dx.doi.org/10.1016/j.conengprac.2015.04.010

M. G. Perhinschi, D. Al Azzawi, H. Moncayo, A. Togayev, A. Perez, Immunity-based Flight Envelope Prediction at Post-failure Conditions, Aerospace Science and Technology, Vol. 46, pp 264-272, Oct.-Nov., 2015.
http://dx.doi.org/10.1016/j.ast.2015.07.014

C. M. Bishop, Pattern Recognition and Machine Learning, (Springer, Singapore, 2006).
http://dx.doi.org/10.1108/03684920710743466

L. Wiley, Using Dynamic Simulation to Drive Process Design, Control, and Optimization, 2015 AlChE Annual Meeting, Salt Lake City, UT, Nov. 8-13, 2015.
http://dx.doi.org/10.2172/10106200

Simsci-Esscor, Dynamic Simulation Suite User Guide, available at http://www.simsci esscor.com, last accessed Sept. 2015.

S. E. Zitney, E. A. Liese, P. Mahapatra, R. Turton, D. Bhattacharyya, G. Provost, AVESTAR Center: Dynamic Simulation-Based Collaboration Toward Achieving Operational Excellence for IGCC Plants with Carbon Capture, Proc. of the 29th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2012.
http://dx.doi.org/10.1115/power2010-27249

NRCCE, Advanced Virtual Energy Simulation Training and Research Center (AVESTAR®), NRCCE, 2015. Available at: http://nrcce.wvu.edu/promotion/as/. [Accessed: 21- Sep- 2015].


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize