Short Review on HVAC Components, Mathematical Model of HVAC System and Different PID Controllers

Seyed Mohammad Attaran(1*), Rubiyah Yusof(2), Hazlina Selamat(3)

(1) Center for Artificial Intelligence & Robotics, Electrical Engineering Faculty, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
(2) Center for Artificial Intelligence & Robotics, Electrical Engineering Faculty, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
(3) Center for Artificial Intelligence & Robotics, Electrical Engineering Faculty, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


This paper is presented for short review of mathematical model of HVAC system as well as different tuning method of PID controllers such as try and error, PSO, robust time response, CHR, Ziegler Nichols and fuzzy logic controller to control the parameters of HVAC system via system identification toolbox. Decoupling algorithm via RGA method is used to convert the MIMO modified system to single SISO systems. The comparisons of different controllers to trace the target values are illustrated.
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Modified Model, HVAC Components, RGA, PID Controller, PSO, Ziegler-Nichols, CHR, Robust Time Method, PSO, Fuzzy Logic

Full Text:



L. J. Wei, The system identification of HVAC using artificial neural network, Master of Engineering, Dept. Mechanical Engineering, University Technology Malaysia, 2012.

R. Salazar, I. López, A. Rojano, A neural network model to predict temperature and relative humidity in a greenhouse, ISHS, vol. 801 n., 2008, pp. 539–546.

Pei-Hung Chi, Fang-Bor Weng, S.-H. C. Ay Su, Numerical modeling of proton exchange membrane fuel cell with considering thermal and relative humidity effects on the cell performance, ASME J Fuel Cell Sci Technol, vol. 3 n. 3, 2006, pp. 292–303.

T. Bourhan, M. Tashtoush, M. Molhim, M. Al-Rousan, Dynamic model of an HVAC system for control analysis, Energy, vol. 30 n., 2005, pp. 1729–1745.

M. Stanescu, S. Kajl, L. Lamarche, Simplified optimization method for preliminary design of HVAC system and real building application, HVAC&R Research, vol. 19 n. 3, 2013/04/03 2013, pp. 213-229.

J. Teeter, C. Mo-Yuen, Application of functional link neural network to HVAC thermal dynamic system identification, Industrial Electronics, IEEE Transactions on, vol. 45 n. 1, 1998, pp. 170-176.

S. El-Ferik, S. A. Hussain, F. M. Al-Sunni, Identification of physically based models of residential air-conditioners for direct load control management, Control Conference, 2004. 5th Asian, 2004.

J. Teeter, M. Y. Chow, Application of functional link neural network to HVAC thermal dynamic system identification, IEEE Trans. Ind. Electron, vol. 1 n., 1999, pp. 170–176.

M. T. Tham, Dynamic models for controller design, Department of chemical and process engineering, Newcastle upon tyne1999.

M. J. Pinnella, E. Wechselberger, D. C. Hittle, C. O. Pederson, Self-tuning digital integral control, ASHRAE Transactions, n., 1986, pp. 202-210.

M. J. Yazdanpanah, E. Semsar, C. Lucas, Minimization of actuator repositioning in delayed processes using flexible neural networks, In proc. IEEE conf. contr. aplicant., 2003.

M. R. Omidi, M. J. Yazdanpanah, Minimization of actuator repositioning using internal model control, Portugal, 2000.

T. Tigrek, S. Dasgupta, T. F. Smith, Nonlinear optimal control of HVAC systems, presented at the 15th IFAC world congr., 2002, Barcelona, spain.

B. Arguello-Serrano, M. Velez-Reyes, Nonlinear control of a heating, ventilating and air conditioning system with thermal load estimation, IEEE Trans. Contr. Syst. Technol, vol. 7 n., 1999, pp. 56–63.

E. Semsar-Kazerooni, M. J. Yazdanpanah, C. Lucas, Nonlinear control and disturbance decoupling of HVAC systems using feedback linearization and backstepping with load estimation, Ieee Transactions on Control Systems Technology, vol. 16 n. 5, sep 2008, pp. 918-929.

R. V. Patel, N. Munro, Multivariable system theory and design ( (Oxford, Eng. and New York) 1982).

D. R. Clark, C. W. Hurley, C. R. Hill, Dynamic models for HVAC system components, ASHRAE Trans., vol. 91(1) n., 1985, pp. 737–751.

M. Zaheeruddin, G. R. Zheng, A dynamic model of multi-zone VAV system for control analysis, ASHRAE Trans., vol. 100(1) n., 1994, pp. 219-229.

A. Parvaresh, S. M. Ali Mohammadi, A. Parvaresh, A new mathematical dynamic model for HVAC system components based on Matlab/Simulink, International Journal of Innovative Technology and Exploring Engineering, vol. 1 n. 2, 2012, pp. 1-6.

M. Kasahara, Y. Kuzuu, T. Matsuba, Y. Hashimoto, K. Kamimura, S. Kurosu, Physical model of an air-conditioned space for control analysis, ASHREA trans., vol. 106 Part 2 n., 2000, pp. 307–317.

G. M. Maxwell, H. N. Shapiro, D. G. Westra, Dynamics and control of a chilled water coil, ASHRAE Trans., vol. 95 Part 1 n., 1989, pp. 1243–1255.

G. Shavit, S. G. Brandi, The dynamic performance of a discharge air temperature system with a P-I controller, ASHRAE Trans, vol. 88 n., 1982, pp. 826-838.

G. E. Myers, J. W. Mitchell, R. F. Norman, The transient response of crossflow heat exchangers, evaporators, and condensers ASME journal of heat transfer, vol. 89 no.1 n., 1967, pp. 75-80.

X. Peng, A. Paassen, State space model for predicting and controlling the temperature response of indoor air zones, Energy building trans., vol. 28 n., 1998, pp. 197–203.

D. M. Underwood, R. R. Crawford, Dynamic nonlinear modeling of a hot-water-to-air heat exchanger for control applications, ASHRAE Trans, vol. 96 n., 1990, pp. 149–155.

M. Kasahara, Y. Kuzuu, Matsuba T, Y. Hashimoto, K. Kamimura, S. Kurosu, Stability analysis and tuning of PID controller in VAV systems, ASHREA trans., vol. 106 Part 2 n., 2000, pp. 285–296.

P. Riederer, D. Marchio, J. C. Visier, A. Husaunndee, R. Lahrech, Room thermal modelling adapted to the test of HVAC control systems, Energy building trans., vol. 37 n., 2002, pp. 777–790.

A. H. Elmahdy, G. P. Mitalas, Simple model for cooling and dehumidifying coils for use in calculating energy requirements for buildings, ASHRAE Trans, vol. 83 Part 2 n., 1977, pp. 103–117.

M. Zaheer-Uddein, Sub-optimal controller for a space heating system, ASHRAE Trans., vol. 99 Part 1 n., 1993, pp. 201–208.

Y. Wang, W. Cai, S. Li, L. Xie, Y. Soh, Development of cooling coil model for system control and optimization, IEEE CCA., 2012, China.

J. A. Clarke, Energy Simulation in Building Design (Butterworth Heinemann, 2011).

W. F. Stoecker, Procedures for Simulating the Performance of Components and Systems for Energy Calculation, ASHRAE, n., 1975, pp.

J. E. Braun, Methodologies for design and control of central cooling plants, PhD Thesis, Department of Mechanical Engineering, University of Wisconsin, Madison, 1988.

R. J. Rabehl, J. W. Mitchell, W. A. Beckman, Parameter estimation and the use of catalog data in modeling heat exchangers and coils, HVAC&R Research, vol. 5 (1) n., 1999, pp. 3–17.

N. Nassif, S. Kajl, R. Sabourin, Modélisation des composants d’un système CVCA existent, Vie Col. Interuniversitaire, Franco-Québécois, Canada.2010.

S. M. Attaran, R. Yusof, S. Hazlina, Application of the Fuzzy-logic Controller to the New Full Mathematic Dynamic Model of HVAC System International Journal of Engineering and Innovative Technology, vol. 2 n. 11, 2013, pp. 156-160.

J. Cui, T. Watanabe, Y. Ryu, Y. Akashi, N. Nishiyama, Numerical simulation on simultaneous control process of indoor air temperature and humidity, In: Sixth international IBPSA conference, proceedings, 1999.

C. Rentel-Gomez, M. Velez-Reyes, Decoupled control of temperature and relative humidity using a variable air volume HVAC system and noninteracting control, In: Proceeding of the IEEE international conference on control applications, 2001.

M. Becker, D. Oestreich, H. Hasse, L. Litz, Fuzzy control for temperature and humidity in refrigeration system, third IEEE conference on control applications, 1994.

Q. Qi, S. Deng, Multivariable control of indoor air temperature and humidity in a direct expansion (DX) air conditioning (A/C) system., Build Environ, vol. 44 n., 2009, pp. 1659–1667.

N. Jain, A. G. Alleyne, Comparison of SISO and MIMO control techniques for a diagonally dominant vapor compression system, Proceedings of the 2009 conference on American Control Conference, 2009, St. Louis, Missouri, USA.

G. C. Goodwin, S. F. Graebe, M. E. Salgado, CONTROL SYSTEM DESIGN, 2000).

M. E. Salgado, A. Conley, MIMO interaction measure and controller structure selection, International Journal of Control, vol. 77 n. 4, 2004/03/10 2004, pp. 367-383.

E. H. Bristol, On a new measure of interaction for multivariable process control, process control. IEEE Transactions on Automatic Control, vol. 11 n., 1966, pp. 133–134.

G. A. Dumont. (2011). Decoupling Control of MIMO Systems.

T. Chai, X. Wang, H. Yue, Multivariable intelligent decoupling control and its applications, Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000.

H. Weihong, Y. Xuejun, Decoupling Control of a Variable-Air-Volume Air-Conditioning System Based on State Feedback, Intelligent Information Technology Application, 2008. IITA '08. Second International Symposium on, 2008.

D. Vaes, J. Swevers, P. Sas, Optimal decoupling for MIMO-controller design with robust performance, American Control Conference, 2004. Proceedings of the 2004, 2004.

F. F. Sanda, DECOUPLING IN DISTILLATION, Journal of Control Engineering and Applied Informatics, vol. 7 n. 1, 2005, pp. 10-19.

K. J. Astrom, T. Hagglund, Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control, vol. 14 n. 6, Aug 2004, pp. 635-650.

C. L. Smith, Digital Computer Process Control ( Scranton, PA, , 1972).

S. Skogestad, I. Postlethwaite, Multivariable Feedback Control (Wiley, 1996).

D. E. Rivera, M. Morari, S. Skogestad, PID controller design, Industrial & Engineering Chemistry, Process Design and Development, vol. 25 n., 1986, pp. 252–265.

P. Cominos, N. Munro, PID controllers: recent tuning methods and design to specifications, IEEE Proceedings––Control Theory and Applications, vol. 149(1) n., 2002, pp. 46–53.

J. G. Ziegler, N. B. Nichols, Optimum settings for automatic controllers, Trans. ASME, vol. 64 n., 1942, pp. 759–768.

K. J. Astr€om, T. H€agglund, The future of PID control, , Control Engineering Practice, vol. 9 n., 2001, pp. 1163–1175.

K. L. Chien, J. A. Hrones, J. B. Reswick, On the automatic control of generalized passive systems, Transactions of ASME, vol. 74 n., 1952, pp. 175-185.

M. Shahrokhi, A. R. Zomorrodi, "Title," unpublished.

Chien-Hrones-Reswick Autotuning Method (PID and Fuzzy Logic Toolkit), n., pp.

M. Ge, M.-S. Chiu, Q.-G. Wang, Robust PID controller design via LMI approach, Journal of Process Control, vol. 12 n. 1, 2002, pp. 3-13.

R. Toscano, A simple pi/pid controller design method via numerical optimizatio approach, Process Control, vol. 15 n., 2005, pp. 81–88.

S. M. Attaran, R. Yusof, S. Hazlina, Comparison of Control’s Parameters of Simplified Full Mathematical Dynamic Model of HVAC System International Journal of Engineering and Innovative Technology, vol. 2 n. 11, 2013, pp. 98-101.

J. Zhang, K. Zhang, A Particle Swarm Optimization Approach for Optimal Design of PID Controller for Temperature Control in HVAC, Measuring Technology and Mechatronics Automation (ICMTMA), 2011 Third International Conference on, 2011.

J. Kennedy, R. Eberhart, Particle Swarm Optimization, IEEE International Conference on Neural Networks, 1995.

B. Klingenberg, "Getting Started with Fuzzy Logic," C. C. Engineering, Ed., ed:

L. X. Wang, j. M. Mendel, Generating of fuzzy rules by learning from examples, IEEE Transact Sin. Man Cyber, vol. 22 n., 1992, pp. 1414-1427.

P. P. Angelov, R. A. Buswell, Automatic generation of fuzzy rule-based models from data by genetic algorithms, Information Sciences, vol. 150 n. 1–2, 2003, pp. 17-31.

S. J. Kang, C. H. Woo, H. S. Hwang, K. B. Woo, Evolutionary design of fuzzy rule base for nonlinear system modeling and control, IEEE Transact Fuzzy Syst, vol. 8 n., 2000, pp. 37-45.

G. Chen, T. I. Pham, J. J. Weiss, Fuzzy modeling of control systems, IEEE Transact Aerospace & Electronic Syst, vol. 31 n., 1995, pp. 414-429.

T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Transact Sysr Man Cyber, vol. 1.5 n., 1985, pp. 116-132.

L. A. Zadeh, Some reflections on the anniversary of fuzzy sets and systems, Fuzzy Sets & Syst, vol. 100 n., 1999, pp. 1-3.

H. Ying, W. Slier, J. J. Buckley, Fuzzy control theory: a nonlinear case, Atomatica, vol. 26 n., 1990, pp. 513-520.

J. Singh, N. Singh, J. K. Sharma, Fuzzy modeling and control of HVAC system-A review, Scientific & Industrial Research, vol. 65 n., 2006, pp. 470-476.

L. I. Davis, T. F. Sieja, R. W. Matteson, G. A. Dage, Fuzzy Logic for Vehicle Climate Control, IEEE, vol. 94 n., 1994, pp. 530- 534.

K. Watanuki, T. Murata, Fuzzy-timing petri net model of temperature control for car air conditioning system, IEEE, vol. 1V-618-IV 622 n., 1999, pp. Watanuki K & Murata T. Fuzzy-timing petri net model of temperature control for car air conditioning system, IEEE, 99 (1999)1991V-1618-IV 1622. .

M. Arima, E. H. Hara, J. D. Katzbera, A fuzzy logic and rough sets controller for HVAC systems, IEEE WESCANEX'95 Proceed, vol. 95 n., 1995, pp. 133-138.

A. S. Betzaida, V. R. Miguel, Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation, IEEE Transact Contr Syst Technol, vol. 7 n., 1999, pp. 56- 63.

X. Li, J. Chen, Z. Chen, W. Liu, W. Hu, X. Liu, A new method for controlling refrigerant now in automobile air conditioning, Appl Therm Engin, vol. 24 n., 2004, pp. 1073-1085.

C. Wu, Z. Xingxi, D. Shiming, Development of control method and dynamic model for multi-evaporator air conditioners (MEAC), Ener Conyers Manage, vol. 6 n., 2004, pp. 141-155.

J. M. Sousa, R. Babuska, H. B. Verbruggen, Fuzzy predictive control applied to an air-conditioning system, Contr EnginPract, vol. 5 n., 1997, pp. 1395-1406.

R. M. Aguilar, V. Muñoz, Y. Callero, Control Application Using Fuzzy Logic: Design of a Fuzzy Temperature Controller, Fuzzy Inference System - Theory and Applications, In D. M. F. Azeem,(ed.), Control Application Using Fuzzy Logic: Design of a Fuzzy Temperature Controller, Fuzzy Inference System - Theory and Applications, 2012).


  • There are currently no refbacks.

Please send any questions about this web site to
Copyright © 2005-2017 Praise Worthy Prize